Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(5y^(2)+x^(2))^(3). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (5y2+x2)3 \left(5 y^{2}+x^{2}\right)^{3} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (5y2+x2)3 \left(5 y^{2}+x^{2}\right)^{3} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent of the binomial expansion.\newlineSince we are expanding (5y2+x2)3(5y^{2}+x^{2})^{3}, we need the 4th4^{\text{th}} row of Pascal's Triangle, which corresponds to the coefficients for a cubic expansion.\newlineThe 4th4^{\text{th}} row of Pascal's Triangle is 1,3,3,11, 3, 3, 1.
  2. Write Terms: Write out each term of the expansion using the binomial theorem and the coefficients from Pascal's Triangle.\newlineThe binomial theorem tells us that (a+b)n=Σ((nk))a(nk)bk(a+b)^n = \Sigma (\binom{n}{k}) \cdot a^{(n-k)} \cdot b^k, where Σ\Sigma denotes the sum over kk from 00 to nn.\newlineFor (5y2+x2)3(5y^{2}+x^{2})^{3}, we have:\newline1(5y2)3(x2)0+3(5y2)2(x2)1+3(5y2)1(x2)2+1(5y2)0(x2)31\cdot(5y^{2})^3\cdot(x^{2})^0 + 3\cdot(5y^{2})^2\cdot(x^{2})^1 + 3\cdot(5y^{2})^1\cdot(x^{2})^2 + 1\cdot(5y^{2})^0\cdot(x^{2})^3
  3. Calculate Terms: Calculate each term of the expansion.\newlineNow we will calculate each term:\newline1×(5y2)3×(x2)0=1×(125y6)×(1)=125y61\times(5y^{2})^{3}\times(x^{2})^{0} = 1\times(125y^{6})\times(1) = 125y^{6}\newline3×(5y2)2×(x2)1=3×(25y4)×(x2)=75y4x23\times(5y^{2})^{2}\times(x^{2})^{1} = 3\times(25y^{4})\times(x^{2}) = 75y^{4}x^{2}\newline3×(5y2)1×(x2)2=3×(5y2)×(x4)=15y2x43\times(5y^{2})^{1}\times(x^{2})^{2} = 3\times(5y^{2})\times(x^{4}) = 15y^{2}x^{4}\newline1×(5y2)0×(x2)3=1×(1)×(x6)=x61\times(5y^{2})^{0}\times(x^{2})^{3} = 1\times(1)\times(x^{6}) = x^{6}
  4. Combine for Final Form: Combine all the terms to write the final expanded form.\newlineThe final expanded form of (5y2+x2)3(5y^{2}+x^{2})^{3} is:\newline125y6+75y4x2+15y2x4+x6125y^{6} + 75y^{4}x^{2} + 15y^{2}x^{4} + x^{6}

More problems from Pascal's triangle and the Binomial Theorem