Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(4y^(2)+5x^(2))^(4). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (4y2+5x2)4 \left(4 y^{2}+5 x^{2}\right)^{4} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (4y2+5x2)4 \left(4 y^{2}+5 x^{2}\right)^{4} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent 44. The row for the exponent 44 is the fifth row (starting with row 00 for the exponent 00), which has the numbers 1,4,6,4,11, 4, 6, 4, 1.
  2. Write Expansion Terms: Write out the terms of the expansion using the coefficients from Pascal's Triangle.\newlineThe expansion will have the form: \newline1×(4y2)4×(5x2)0+4×(4y2)3×(5x2)1+6×(4y2)2×(5x2)2+4×(4y2)1×(5x2)3+1×(4y2)0×(5x2)41\times(4y^2)^4\times(5x^2)^0 + 4\times(4y^2)^3\times(5x^2)^1 + 6\times(4y^2)^2\times(5x^2)^2 + 4\times(4y^2)^1\times(5x^2)^3 + 1\times(4y^2)^0\times(5x^2)^4.
  3. Calculate Each Term: Calculate each term of the expansion.\newline11st term: 1(4y2)4(5x2)0=1256y81=256y81*(4y^2)^4*(5x^2)^0 = 1*256y^8*1 = 256y^8\newline22nd term: 4(4y2)3(5x2)1=464y65x2=1280y6x24*(4y^2)^3*(5x^2)^1 = 4*64y^6*5x^2 = 1280y^6x^2\newline33rd term: 6(4y2)2(5x2)2=616y425x4=2400y4x46*(4y^2)^2*(5x^2)^2 = 6*16y^4*25x^4 = 2400y^4x^4\newline44th term: 4(4y2)1(5x2)3=44y2125x6=2000y2x64*(4y^2)^1*(5x^2)^3 = 4*4y^2*125x^6 = 2000y^2x^6\newline55th term: 1(4y2)0(5x2)4=11625x8=625x81*(4y^2)^0*(5x^2)^4 = 1*1*625x^8 = 625x^8
  4. Combine Terms: Combine all the terms to write the final expanded form.\newlineThe expanded form is:\newline256y8+1280y6x2+2400y4x4+2000y2x6+625x8256y^8 + 1280y^6x^2 + 2400y^4x^4 + 2000y^2x^6 + 625x^8.

More problems from Pascal's triangle and the Binomial Theorem