Q. Use Pascal's Triangle to expand (4y2+5x2)4. Express your answer in simplest form.Answer:
Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent 4. The row for the exponent 4 is the fifth row (starting with row 0 for the exponent 0), which has the numbers 1,4,6,4,1.
Write Expansion Terms: Write out the terms of the expansion using the coefficients from Pascal's Triangle.The expansion will have the form: 1×(4y2)4×(5x2)0+4×(4y2)3×(5x2)1+6×(4y2)2×(5x2)2+4×(4y2)1×(5x2)3+1×(4y2)0×(5x2)4.
Calculate Each Term: Calculate each term of the expansion.1st term: 1∗(4y2)4∗(5x2)0=1∗256y8∗1=256y82nd term: 4∗(4y2)3∗(5x2)1=4∗64y6∗5x2=1280y6x23rd term: 6∗(4y2)2∗(5x2)2=6∗16y4∗25x4=2400y4x44th term: 4∗(4y2)1∗(5x2)3=4∗4y2∗125x6=2000y2x65th term: 1∗(4y2)0∗(5x2)4=1∗1∗625x8=625x8
Combine Terms: Combine all the terms to write the final expanded form.The expanded form is:256y8+1280y6x2+2400y4x4+2000y2x6+625x8.
More problems from Pascal's triangle and the Binomial Theorem