Q. Use Pascal's Triangle to expand (4−z2)4. Express your answer in simplest form.Answer:
Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent 4. The fourth row (starting with row 0) of Pascal's Triangle is 1,4,6,4,1.
Write Expansion: Write out the terms of the expansion using the coefficients from Pascal's Triangle.The expansion will have the form: 1×(4)4×(−z2)0+4×(4)3×(−z2)1+6×(4)2×(−z2)2+4×(4)1×(−z2)3+1×(4)0×(−z2)4.
Simplify Terms: Simplify each term of the expansion.1×(4)4×(−z2)0=1×256×1=2564×(4)3×(−z2)1=4×64×(−z2)=−1024z26×(4)2×(−z2)2=6×16×z4=96z44×(4)1×(−z2)3=4×4×(−z6)=−64z61×(4)0×(−z2)4=1×1×z8=z8
Combine Simplified Terms: Combine all the simplified terms to get the final expanded form.The final expanded form is:256−1024z2+96z4−64z6+z8.
More problems from Pascal's triangle and the Binomial Theorem