Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(4-z^(2))^(4). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (4z2)4 \left(4-z^{2}\right)^{4} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (4z2)4 \left(4-z^{2}\right)^{4} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent 44. The fourth row (starting with row 00) of Pascal's Triangle is 1,4,6,4,11, 4, 6, 4, 1.
  2. Write Expansion: Write out the terms of the expansion using the coefficients from Pascal's Triangle.\newlineThe expansion will have the form: \newline1×(4)4×(z2)0+4×(4)3×(z2)1+6×(4)2×(z2)2+4×(4)1×(z2)3+1×(4)0×(z2)41\times(4)^4\times(-z^2)^0 + 4\times(4)^3\times(-z^2)^1 + 6\times(4)^2\times(-z^2)^2 + 4\times(4)^1\times(-z^2)^3 + 1\times(4)^0\times(-z^2)^4.
  3. Simplify Terms: Simplify each term of the expansion.\newline1×(4)4×(z2)0=1×256×1=2561\times(4)^4\times(-z^2)^0 = 1\times256\times1 = 256\newline4×(4)3×(z2)1=4×64×(z2)=1024z24\times(4)^3\times(-z^2)^1 = 4\times64\times(-z^2) = -1024z^2\newline6×(4)2×(z2)2=6×16×z4=96z46\times(4)^2\times(-z^2)^2 = 6\times16\times z^4 = 96z^4\newline4×(4)1×(z2)3=4×4×(z6)=64z64\times(4)^1\times(-z^2)^3 = 4\times4\times(-z^6) = -64z^6\newline1×(4)0×(z2)4=1×1×z8=z81\times(4)^0\times(-z^2)^4 = 1\times1\times z^8 = z^8
  4. Combine Simplified Terms: Combine all the simplified terms to get the final expanded form.\newlineThe final expanded form is:\newline2561024z2+96z464z6+z8256 - 1024z^2 + 96z^4 - 64z^6 + z^8.

More problems from Pascal's triangle and the Binomial Theorem