Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(4+2y)^(3). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (4+2y)3 (4+2 y)^{3} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (4+2y)3 (4+2 y)^{3} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Exponent 33: Identify the row of Pascal's Triangle that corresponds to the exponent 33. The third row of Pascal's Triangle (starting with row 00) is 1,3,3,11, 3, 3, 1. These numbers will be the coefficients in the expanded form.
  2. Write Binomial Theorem Terms: Write out the terms using the binomial theorem and the coefficients from Pascal's Triangle.\newlineThe binomial theorem states that (a+b)n=k=0n(nk)ankbk(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} \cdot a^{n-k} \cdot b^k. For (4+2y)3(4+2y)^3, the terms will be:\newline1(4)3(2y)0+3(4)2(2y)1+3(4)1(2y)2+1(4)0(2y)31\cdot(4)^3\cdot(2y)^0 + 3\cdot(4)^2\cdot(2y)^1 + 3\cdot(4)^1\cdot(2y)^2 + 1\cdot(4)^0\cdot(2y)^3
  3. Calculate Each Term: Calculate each term separately.\newline1×(4)3×(2y)0=1×64×1=641\times(4)^3\times(2y)^0 = 1\times64\times1 = 64\newline3×(4)2×(2y)1=3×16×2y=96y3\times(4)^2\times(2y)^1 = 3\times16\times2y = 96y\newline3×(4)1×(2y)2=3×4×(2y)2=3×4×4y2=48y23\times(4)^1\times(2y)^2 = 3\times4\times(2y)^2 = 3\times4\times4y^2 = 48y^2\newline1×(4)0×(2y)3=1×1×(2y)3=8y31\times(4)^0\times(2y)^3 = 1\times1\times(2y)^3 = 8y^3
  4. Combine Terms: Combine all the terms to get the expanded form. 64+96y+48y2+8y364 + 96y + 48y^2 + 8y^3

More problems from Pascal's triangle and the Binomial Theorem