Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(3z-4)^(4). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (3z4)4 (3 z-4)^{4} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (3z4)4 (3 z-4)^{4} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent 44. The row for the exponent 44 in Pascal's Triangle is the fifth row (starting with row 00 for the exponent 00), which is 1,4,6,4,11, 4, 6, 4, 1.
  2. Write Expansion Terms: Write out the terms of the expansion using the coefficients from Pascal's Triangle.\newlineThe expansion will have the form: (a+b)4=1a4b0+4a3b1+6a2b2+4a1b3+1a0b4(a+b)^4 = 1\cdot a^4\cdot b^0 + 4\cdot a^3\cdot b^1 + 6\cdot a^2\cdot b^2 + 4\cdot a^1\cdot b^3 + 1\cdot a^0\cdot b^4.\newlineIn our case, a=3za = 3z and b=4b = -4.
  3. Substitute and Simplify: Substitute a=3za = 3z and b=4b = -4 into the expansion and simplify each term.\newlineThe expansion becomes: 1(3z)4(4)0+4(3z)3(4)1+6(3z)2(4)2+4(3z)1(4)3+1(3z)0(4)41\cdot(3z)^4\cdot(-4)^0 + 4\cdot(3z)^3\cdot(-4)^1 + 6\cdot(3z)^2\cdot(-4)^2 + 4\cdot(3z)^1\cdot(-4)^3 + 1\cdot(3z)^0\cdot(-4)^4.
  4. Calculate Each Term: Calculate each term separately.\newline11st term: 1(3z)4(4)0=181z41=81z41*(3z)^4*(-4)^0 = 1*81z^4*1 = 81z^4\newline22nd term: 4(3z)3(4)1=427z3(4)=432z34*(3z)^3*(-4)^1 = 4*27z^3*(-4) = -432z^3\newline33rd term: 6(3z)2(4)2=69z216=864z26*(3z)^2*(-4)^2 = 6*9z^2*16 = 864z^2\newline44th term: 4(3z)1(4)3=43z(64)=768z4*(3z)^1*(-4)^3 = 4*3z*(-64) = -768z\newline55th term: 1(3z)0(4)4=11256=2561*(3z)^0*(-4)^4 = 1*1*256 = 256
  5. Combine for Final Form: Combine all the terms to get the final expanded form.\newlineThe expanded form is: 81z4432z3+864z2768z+25681z^4 - 432z^3 + 864z^2 - 768z + 256.

More problems from Pascal's triangle and the Binomial Theorem