Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(3z-3y)^(5). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (3z3y)5 (3 z-3 y)^{5} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (3z3y)5 (3 z-3 y)^{5} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row for Exponent 55: Identify the row of Pascal's Triangle that corresponds to the exponent 55. The 66th row (since we start counting from the 00th row for the exponent 00) of Pascal's Triangle is 1,5,10,10,5,11, 5, 10, 10, 5, 1. These numbers will be the coefficients in the expanded form.
  2. Write Expansion Using Binomial Theorem: Write out the terms of the expansion using the binomial theorem and the coefficients from Pascal's Triangle.\newlineThe binomial theorem states that (a+b)n=Σ((nk))a(nk)bk(a+b)^n = \Sigma (\binom{n}{k}) \cdot a^{(n-k)} \cdot b^k, where Σ\Sigma denotes the sum over kk from 00 to nn. For (3z3y)5(3z-3y)^5, a=3za = 3z and b=3yb = -3y, so the expansion will be:\newline1(3z)5(3y)0+5(3z)4(3y)1+10(3z)3(3y)2+10(3z)2(3y)3+5(3z)1(3y)4+1(3z)0(3y)51\cdot(3z)^5\cdot(-3y)^0 + 5\cdot(3z)^4\cdot(-3y)^1 + 10\cdot(3z)^3\cdot(-3y)^2 + 10\cdot(3z)^2\cdot(-3y)^3 + 5\cdot(3z)^1\cdot(-3y)^4 + 1\cdot(3z)^0\cdot(-3y)^5
  3. Simplify Each Term: Simplify each term in the expansion.\newlineNow we simplify each term by calculating the powers and multiplying the coefficients:\newline1×(243z5)(1)+5×(81z4)(3y)+10×(27z3)(9y2)+10×(9z2)(27y3)+5×(3z)(81y4)+1×(1)(243y5)1\times(243z^5)(1) + 5\times(81z^4)(-3y) + 10\times(27z^3)(9y^2) + 10\times(9z^2)(-27y^3) + 5\times(3z)(81y^4) + 1\times(1)(-243y^5)\newlineThis simplifies to:\newline243z51215z4y+2430z3y22430z2y3+1215zy4243y5243z^5 - 1215z^4y + 2430z^3y^2 - 2430z^2y^3 + 1215zy^4 - 243y^5
  4. Check for Simplification: Check for any possible simplification or combination of like terms. There are no like terms to combine, and each term is already simplified.
  5. Write Final Answer: Write the final answer in standard polynomial form, ordering the terms from highest degree to lowest degree.\newlineThe final expanded form of (3z3y)5(3z-3y)^5 is:\newline243z51215z4y+2430z3y22430z2y3+1215zy4243y5243z^5 - 1215z^4y + 2430z^3y^2 - 2430z^2y^3 + 1215zy^4 - 243y^5

More problems from Pascal's triangle and the Binomial Theorem