Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(3z-2y)^(5). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (3z2y)5 (3 z-2 y)^{5} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (3z2y)5 (3 z-2 y)^{5} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent 55. The 66th row (since we start counting from the 00th row for the exponent 00) of Pascal's Triangle is 1,5,10,10,5,11, 5, 10, 10, 5, 1. These numbers will be the coefficients in the expanded form.
  2. Write Expansion Terms: Write out the terms of the expansion using the binomial theorem and the coefficients from Pascal's Triangle.\newlineThe binomial theorem states that (a+b)n=Σ((nk))a(nk)bk(a + b)^n = \Sigma (\binom{n}{k}) * a^{(n-k)} * b^k, where Σ\Sigma denotes the sum over kk from 00 to nn.\newlineFor (3z2y)5(3z - 2y)^5, the expanded form will be:\newline1(3z)5(2y)0+5(3z)4(2y)1+10(3z)3(2y)2+10(3z)2(2y)3+5(3z)1(2y)4+1(3z)0(2y)51*(3z)^5*(-2y)^0 + 5*(3z)^4*(-2y)^1 + 10*(3z)^3*(-2y)^2 + 10*(3z)^2*(-2y)^3 + 5*(3z)^1*(-2y)^4 + 1*(3z)^0*(-2y)^5
  3. Simplify Each Term: Simplify each term of the expansion.\newlineNow we will simplify each term by calculating the powers and multiplying the coefficients:\newline1×(243z5)(1)+5×(81z4)(2y)+10×(27z3)(4y2)+10×(9z2)(8y3)+5×(3z)(16y4)+1×(1)(32y5)1\times(243z^5)(1) + 5\times(81z^4)(-2y) + 10\times(27z^3)(4y^2) + 10\times(9z^2)(-8y^3) + 5\times(3z)(16y^4) + 1\times(1)(-32y^5)
  4. Combine Coefficients: Combine the coefficients and simplify the terms.\newlineNow we multiply the coefficients together for each term:\newline(243z5)+(810z4y)+(1080z3y2)+(720z2y3)+(240zy4)+(32y5)(243z^5) + (-810z^4y) + (1080z^3y^2) + (-720z^2y^3) + (240zy^4) + (-32y^5)
  5. Write Final Form: Write the final expanded form in simplest terms.\newlineThe final expanded form of (3z2y)5(3z - 2y)^5 is:\newline243z5810z4y+1080z3y2720z2y3+240zy432y5243z^5 - 810z^4y + 1080z^3y^2 - 720z^2y^3 + 240zy^4 - 32y^5

More problems from Pascal's triangle and the Binomial Theorem