Q. Use Pascal's Triangle to expand (3z2+5x2)4. Express your answer in simplest form.Answer:
Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent 4. The 5th row of Pascal's Triangle (since we start counting from the 0th row) is 1,4,6,4,1.
Write Coefficients: Write out each term of the expansion using the coefficients from Pascal's Triangle.The expansion will have 5 terms, corresponding to the coefficients 1,4,6,4,1.
Apply Binomial Expansion: Apply the binomial expansion using the coefficients and the variables (3z2) and (5x2). The terms will be: 1⋅(3z2)4⋅(5x2)0+4⋅(3z2)3⋅(5x2)1+6⋅(3z2)2⋅(5x2)2+4⋅(3z2)1⋅(5x2)3+1⋅(3z2)0⋅(5x2)4
Calculate Each Term: Calculate each term separately.1st term: 1∗(3z2)4∗(5x2)0=1∗(81z8)∗(1)=81z82nd term: 4∗(3z2)3∗(5x2)1=4∗(27z6)∗(5x2)=540z6x23rd term: 6∗(3z2)2∗(5x2)2=6∗(9z4)∗(25x4)=1350z4x44th term: 4∗(3z2)1∗(5x2)3=4∗(3z2)∗(125x6)=1500z2x65th term: 1∗(3z2)0∗(5x2)4=1∗(1)∗(625x8)=625x8
Combine Final Form: Combine all the terms to get the final expanded form.The expanded form is:81z8+540z6x2+1350z4x4+1500z2x6+625x8
More problems from Pascal's triangle and the Binomial Theorem