Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(3z^(2)+5x^(2))^(4). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (3z2+5x2)4 \left(3 z^{2}+5 x^{2}\right)^{4} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (3z2+5x2)4 \left(3 z^{2}+5 x^{2}\right)^{4} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent 44. The 55th row of Pascal's Triangle (since we start counting from the 00th row) is 1,4,6,4,11, 4, 6, 4, 1.
  2. Write Coefficients: Write out each term of the expansion using the coefficients from Pascal's Triangle.\newlineThe expansion will have 55 terms, corresponding to the coefficients 1,4,6,4,11, 4, 6, 4, 1.
  3. Apply Binomial Expansion: Apply the binomial expansion using the coefficients and the variables (3z2)(3z^{2}) and (5x2)(5x^{2}). The terms will be: 1(3z2)4(5x2)0+4(3z2)3(5x2)1+6(3z2)2(5x2)2+4(3z2)1(5x2)3+1(3z2)0(5x2)41\cdot(3z^{2})^{4}\cdot(5x^{2})^{0} + 4\cdot(3z^{2})^{3}\cdot(5x^{2})^{1} + 6\cdot(3z^{2})^{2}\cdot(5x^{2})^{2} + 4\cdot(3z^{2})^{1}\cdot(5x^{2})^{3} + 1\cdot(3z^{2})^{0}\cdot(5x^{2})^{4}
  4. Calculate Each Term: Calculate each term separately.\newline11st term: 1(3z2)4(5x2)0=1(81z8)(1)=81z81*(3z^{2})^4*(5x^{2})^0 = 1*(81z^{8})*(1) = 81z^{8}\newline22nd term: 4(3z2)3(5x2)1=4(27z6)(5x2)=540z6x24*(3z^{2})^3*(5x^{2})^1 = 4*(27z^{6})*(5x^{2}) = 540z^{6}x^{2}\newline33rd term: 6(3z2)2(5x2)2=6(9z4)(25x4)=1350z4x46*(3z^{2})^2*(5x^{2})^2 = 6*(9z^{4})*(25x^{4}) = 1350z^{4}x^{4}\newline44th term: 4(3z2)1(5x2)3=4(3z2)(125x6)=1500z2x64*(3z^{2})^1*(5x^{2})^3 = 4*(3z^{2})*(125x^{6}) = 1500z^{2}x^{6}\newline55th term: 1(3z2)0(5x2)4=1(1)(625x8)=625x81*(3z^{2})^0*(5x^{2})^4 = 1*(1)*(625x^{8}) = 625x^{8}
  5. Combine Final Form: Combine all the terms to get the final expanded form.\newlineThe expanded form is:\newline81z8+540z6x2+1350z4x4+1500z2x6+625x881z^{8} + 540z^{6}x^{2} + 1350z^{4}x^{4} + 1500z^{2}x^{6} + 625x^{8}

More problems from Pascal's triangle and the Binomial Theorem