Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(3z^(2)+5)^(4). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (3z2+5)4 \left(3 z^{2}+5\right)^{4} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (3z2+5)4 \left(3 z^{2}+5\right)^{4} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent 44. The 55th row (since we start counting from 00) of Pascal's Triangle is 1,4,6,4,11, 4, 6, 4, 1. These numbers will be the coefficients in our expanded expression.
  2. Write Expansion Terms: Write out the terms of the expansion using the binomial theorem and the coefficients from Pascal's Triangle.\newlineThe binomial theorem tells us that ((a+b)n=Σ(nk)ankbk)(a + b)^n = \Sigma (n \choose k) \cdot a^{n-k} \cdot b^k, where Σ\Sigma denotes the sum over kk from 00 to nn.\newlineFor (3z2+5)4(3z^{2} + 5)^4, we have:\newline1(3z2)4(5)0+4(3z2)3(5)1+6(3z2)2(5)2+4(3z2)1(5)3+1(3z2)0(5)41\cdot(3z^{2})^4\cdot(5)^0 + 4\cdot(3z^{2})^3\cdot(5)^1 + 6\cdot(3z^{2})^2\cdot(5)^2 + 4\cdot(3z^{2})^1\cdot(5)^3 + 1\cdot(3z^{2})^0\cdot(5)^4
  3. Calculate Each Term: Calculate each term of the expansion.\newline1×(3z2)4×(5)0=1×(81z8)×(1)=81z81\times(3z^{2})^{4}\times(5)^{0} = 1\times(81z^{8})\times(1) = 81z^{8}\newline4×(3z2)3×(5)1=4×(27z6)×(5)=540z64\times(3z^{2})^{3}\times(5)^{1} = 4\times(27z^{6})\times(5) = 540z^{6}\newline6×(3z2)2×(5)2=6×(9z4)×(25)=1350z46\times(3z^{2})^{2}\times(5)^{2} = 6\times(9z^{4})\times(25) = 1350z^{4}\newline4×(3z2)1×(5)3=4×(3z2)×(125)=1500z24\times(3z^{2})^{1}\times(5)^{3} = 4\times(3z^{2})\times(125) = 1500z^{2}\newline1×(3z2)0×(5)4=1×(1)×(625)=6251\times(3z^{2})^{0}\times(5)^{4} = 1\times(1)\times(625) = 625
  4. Combine for Final Form: Combine all the terms to write the final expanded form.\newlineThe expanded form of (3z2+5)4(3z^{2} + 5)^4 is:\newline81z8+540z6+1350z4+1500z2+62581z^{8} + 540z^{6} + 1350z^{4} + 1500z^{2} + 625

More problems from Pascal's triangle and the Binomial Theorem