Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(3y+5z)^(4). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (3y+5z)4 (3 y+5 z)^{4} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (3y+5z)4 (3 y+5 z)^{4} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Pascal's Triangle: Identify the 4th4^{\text{th}} row of Pascal's Triangle to determine the coefficients for the expansion of (3y+5z)4(3y+5z)^{4}. The 4th4^{\text{th}} row of Pascal's Triangle is 1,4,6,4,11, 4, 6, 4, 1.
  2. Write Expansion Terms: Write out the terms of the expansion using the binomial theorem and the coefficients from Pascal's Triangle.\newlineThe expansion will have the form: \newline1×(3y)4×(5z)0+4×(3y)3×(5z)1+6×(3y)2×(5z)2+4×(3y)1×(5z)3+1×(3y)0×(5z)41\times(3y)^4\times(5z)^0 + 4\times(3y)^3\times(5z)^1 + 6\times(3y)^2\times(5z)^2 + 4\times(3y)^1\times(5z)^3 + 1\times(3y)^0\times(5z)^4.
  3. Calculate Each Term: Calculate each term of the expansion.\newline11st term: 1(3y)4(5z)0=181y41=81y41*(3y)^4*(5z)^0 = 1*81y^4*1 = 81y^4\newline22nd term: 4(3y)3(5z)1=427y35z=540y3z4*(3y)^3*(5z)^1 = 4*27y^3*5z = 540y^3z\newline33rd term: 6(3y)2(5z)2=69y225z2=1350y2z26*(3y)^2*(5z)^2 = 6*9y^2*25z^2 = 1350y^2z^2\newline44th term: 4(3y)1(5z)3=43y125z3=1500yz34*(3y)^1*(5z)^3 = 4*3y*125z^3 = 1500yz^3\newline55th term: 1(3y)0(5z)4=11625z4=625z41*(3y)^0*(5z)^4 = 1*1*625z^4 = 625z^4
  4. Combine Terms for Expansion: Combine all the terms to write the final expanded form of 3y+5z3y+5z^{44}. The expanded form is: \({\(81\)y^\(4\) + \(540\)y^\(3\)z + \(1350\)y^\(2\)z^\(2\) + \(1500\)yz^\(3\) + \(625\)z^\(4\)\}).

More problems from Pascal's triangle and the Binomial Theorem