Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(3x-5z)^(3). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (3x5z)3 (3 x-5 z)^{3} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (3x5z)3 (3 x-5 z)^{3} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row of Pascal's Triangle: Identify the row of Pascal's Triangle that corresponds to the exponent 33. The third row of Pascal's Triangle (starting with row 00) is 1,3,3,11, 3, 3, 1.
  2. Write Binomial Coefficients: Write out the terms using the binomial coefficients from Pascal's Triangle.\newlineThe expansion of (ab)3(a-b)^3 using the binomial theorem is given by:\newline1a3+3a2b+3ab2+1b31\cdot a^3 + 3\cdot a^2\cdot b + 3\cdot a\cdot b^2 + 1\cdot b^3
  3. Substitute Variables: Substitute aa with 3x3x and bb with 5z-5z in the expansion.\newlineThe terms become:\newline1(3x)3+3(3x)2(5z)+3(3x)(5z)2+1(5z)31\cdot(3x)^3 + 3\cdot(3x)^2\cdot(-5z) + 3\cdot(3x)\cdot(-5z)^2 + 1\cdot(-5z)^3
  4. Calculate Each Term: Calculate each term.\newline1(3x)3=1(27x3)=27x31*(3x)^3 = 1*(27x^3) = 27x^3\newline3(3x)2(5z)=3(9x2)(5z)=135x2z3*(3x)^2*(-5z) = 3*(9x^2)*(-5z) = -135x^2z\newline3(3x)(5z)2=3(3x)(25z2)=225xz23*(3x)*(-5z)^2 = 3*(3x)*(25z^2) = 225xz^2\newline1(5z)3=125z31*(-5z)^3 = -125z^3
  5. Combine Terms: Combine the terms to get the final expanded form.\newlineThe expanded form is:\newline27x3135x2z+225xz2125z327x^3 - 135x^2z + 225xz^2 - 125z^3

More problems from Pascal's triangle and the Binomial Theorem