Q. Use Pascal's Triangle to expand (3+y2)5. Express your answer in simplest form.Answer:
Identify Coefficients: Identify the coefficients from Pascal's Triangle for the expansion of (a+b)5. The coefficients for the expansion of a binomial to the fifth power are 1,5,10,10,5,1.
Write General Form: Write down the general form of the binomial expansion using the coefficients.The general form of the expansion is:(3+y2)5=1⋅(35)⋅(y2)0+5⋅(34)⋅(y2)1+10⋅(33)⋅(y2)2+10⋅(32)⋅(y2)3+5⋅(31)⋅(y2)4+1⋅(30)⋅(y2)5
Calculate Each Term: Calculate each term of the expansion.1st term: 1∗(35)∗(y2)0=1∗243∗1=2432nd term: 5∗(34)∗(y2)1=5∗81∗y2=405y23rd term: 10∗(33)∗(y2)2=10∗27∗y4=270y44th term: 10∗(32)∗(y2)3=10∗9∗y6=90y65th term: 5∗(31)∗(y2)4=5∗3∗y8=15y86th term: 1∗(30)∗(y2)5=1∗1∗y10=y10
Combine Terms: Combine all the terms to write the final expanded form.(3+y2)5=243+405y2+270y4+90y6+15y8+y10
More problems from Pascal's triangle and the Binomial Theorem