Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(3+y^(2))^(5). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (3+y2)5 \left(3+y^{2}\right)^{5} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (3+y2)5 \left(3+y^{2}\right)^{5} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Coefficients: Identify the coefficients from Pascal's Triangle for the expansion of (a+b)5(a+b)^5. The coefficients for the expansion of a binomial to the fifth power are 1,5,10,10,5,11, 5, 10, 10, 5, 1.
  2. Write General Form: Write down the general form of the binomial expansion using the coefficients.\newlineThe general form of the expansion is:\newline(3+y2)5=1(35)(y2)0+5(34)(y2)1+10(33)(y2)2+10(32)(y2)3+5(31)(y2)4+1(30)(y2)5(3+y^2)^5 = 1\cdot(3^5)\cdot(y^2)^0 + 5\cdot(3^4)\cdot(y^2)^1 + 10\cdot(3^3)\cdot(y^2)^2 + 10\cdot(3^2)\cdot(y^2)^3 + 5\cdot(3^1)\cdot(y^2)^4 + 1\cdot(3^0)\cdot(y^2)^5
  3. Calculate Each Term: Calculate each term of the expansion.\newline11st term: 1(35)(y2)0=12431=2431*(3^5)*(y^2)^0 = 1*243*1 = 243\newline22nd term: 5(34)(y2)1=581y2=405y25*(3^4)*(y^2)^1 = 5*81*y^2 = 405y^2\newline33rd term: 10(33)(y2)2=1027y4=270y410*(3^3)*(y^2)^2 = 10*27*y^4 = 270y^4\newline44th term: 10(32)(y2)3=109y6=90y610*(3^2)*(y^2)^3 = 10*9*y^6 = 90y^6\newline55th term: 5(31)(y2)4=53y8=15y85*(3^1)*(y^2)^4 = 5*3*y^8 = 15y^8\newline66th term: 1(30)(y2)5=11y10=y101*(3^0)*(y^2)^5 = 1*1*y^{10} = y^{10}
  4. Combine Terms: Combine all the terms to write the final expanded form.\newline(3+y2)5=243+405y2+270y4+90y6+15y8+y10(3+y^2)^5 = 243 + 405y^2 + 270y^4 + 90y^6 + 15y^8 + y^{10}

More problems from Pascal's triangle and the Binomial Theorem