Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(2y^(2)+z^(2))^(3). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (2y2+z2)3 \left(2 y^{2}+z^{2}\right)^{3} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (2y2+z2)3 \left(2 y^{2}+z^{2}\right)^{3} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent of the binomial expansion.\newlineSince we are expanding (2y2+z2)3(2y^{2}+z^{2})^{3}, we need to look at the fourth row of Pascal's Triangle, which corresponds to the coefficients for a cubic expansion.\newlineThe fourth row of Pascal's Triangle is 1,3,3,11, 3, 3, 1.
  2. Write Terms: Write out each term of the expansion using the coefficients from Pascal's Triangle.\newlineThe expansion will have four terms, and the coefficients will be 11, 33, 33, and 11, respectively.\newlineThe terms will be:\newline1(2y2)3(z2)01*(2y^{2})^{3}*(z^{2})^{0},\newline3(2y2)2(z2)13*(2y^{2})^{2}*(z^{2})^{1},\newline3(2y2)1(z2)23*(2y^{2})^{1}*(z^{2})^{2},\newline1(2y2)0(z2)31*(2y^{2})^{0}*(z^{2})^{3}.
  3. Calculate Each Term: Calculate each term of the expansion.\newlineNow we will calculate each term:\newline1×(2y2)3×(z2)0=1×(8y6)×(1)=8y61\times(2y^{2})^{3}\times(z^{2})^{0} = 1\times(8y^{6})\times(1) = 8y^{6},\newline3×(2y2)2×(z2)1=3×(4y4)×(z2)=12y4z23\times(2y^{2})^{2}\times(z^{2})^{1} = 3\times(4y^{4})\times(z^{2}) = 12y^{4}z^{2},\newline3×(2y2)1×(z2)2=3×(2y2)×(z4)=6y2z43\times(2y^{2})^{1}\times(z^{2})^{2} = 3\times(2y^{2})\times(z^{4}) = 6y^{2}z^{4},\newline1×(2y2)0×(z2)3=1×(1)×(z6)=z61\times(2y^{2})^{0}\times(z^{2})^{3} = 1\times(1)\times(z^{6}) = z^{6}.
  4. Combine Final Form: Combine all the terms to write the final expanded form.\newlineThe final expanded form of (2y2+z2)3(2y^{2}+z^{2})^{3} is:\newline8y6+12y4z2+6y2z4+z68y^{6} + 12y^{4}z^{2} + 6y^{2}z^{4} + z^{6}.

More problems from Pascal's triangle and the Binomial Theorem