Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a cylinder is 54 pi cubic inches and the height is 6 inches. Find the radius.
(A) 3cm
(B) 9cm
(C) 3.14cm
(D) 1cm

The volume of a cylinder is 54π 54 \pi cubic inches and the height is 66 inches. Find the radius.\newline(A) 3 cm 3 \mathrm{~cm} \newline(B) 9 cm 9 \mathrm{~cm} \newline(C) 3.14 cm 3.14 \mathrm{~cm} \newline(D) 1 cm 1 \mathrm{~cm}

Full solution

Q. The volume of a cylinder is 54π 54 \pi cubic inches and the height is 66 inches. Find the radius.\newline(A) 3 cm 3 \mathrm{~cm} \newline(B) 9 cm 9 \mathrm{~cm} \newline(C) 3.14 cm 3.14 \mathrm{~cm} \newline(D) 1 cm 1 \mathrm{~cm}
  1. Write Given Information: Write down the given information and the formula for the volume of a cylinder.\newlineThe volume of a cylinder VV is given by the formula V=πr2hV = \pi r^2 h, where rr is the radius and hh is the height.\newlineGiven: V=54πV = 54\pi cubic inches, h=6h = 6 inches.\newlineWe need to find the radius rr.
  2. Substitute and Solve for r: Substitute the given values into the volume formula and solve for r.\newline54π=πr2×654\pi = \pi r^2 \times 6\newlineTo find rr, we first divide both sides of the equation by π\pi to eliminate π\pi from the equation.\newline54=r2×654 = r^2 \times 6
  3. Isolate r2r^2: Divide both sides of the equation by 66 to isolate r2r^2.\newline546=r2\frac{54}{6} = r^2\newline9=r29 = r^2
  4. Solve for r: Take the square root of both sides to solve for r.\newline9=r\sqrt{9} = r\newline3=r3 = r

More problems from Volume of cubes and rectangular prisms: word problems