Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
84ft^(3). David measures the sides to be 
3.91ft by 
2.84ft by 
7.35ft. In calculating the volume, what is the relative error, to the nearest thousandth.
Answer:

The volume of a rectangular prism is 84ft3 84 \mathrm{ft}^{3} . David measures the sides to be 3.91ft 3.91 \mathrm{ft} by 2.84ft 2.84 \mathrm{ft} by 7.35ft 7.35 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 84ft3 84 \mathrm{ft}^{3} . David measures the sides to be 3.91ft 3.91 \mathrm{ft} by 2.84ft 2.84 \mathrm{ft} by 7.35ft 7.35 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Volume: Calculate the volume of the rectangular prism using the measured sides.\newlineVolume = length×width×height\text{length} \times \text{width} \times \text{height}\newlineVolume = 3.91ft×2.84ft×7.35ft3.91\,\text{ft} \times 2.84\,\text{ft} \times 7.35\,\text{ft}\newlineVolume = 81.84714ft381.84714\,\text{ft}^3
  2. Calculate Absolute Error: Calculate the absolute error by subtracting the calculated volume from the given volume.\newlineAbsolute error = Given volumeCalculated volume|\text{Given volume} - \text{Calculated volume}|\newlineAbsolute error = 84ft³81.84714ft³|84\text{ft}³ - 81.84714\text{ft}³|\newlineAbsolute error = 2.15286ft³2.15286\text{ft}³
  3. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the given volume and then converting it to a percentage.\newlineRelative error = (Absolute error/Given volume)×100%(\text{Absolute error} / \text{Given volume}) \times 100\%\newlineRelative error = (2.15286ft3/84ft3)×100%(2.15286\,\text{ft}^3 / 84\,\text{ft}^3) \times 100\%\newlineRelative error = 0.0256307×100%0.0256307 \times 100\%\newlineRelative error = 2.56307%2.56307\%
  4. Round Relative Error: Round the relative error to the nearest thousandth.\newlineRelative error (rounded) = 2.563%2.563\%

More problems from Find probabilities using the binomial distribution