Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
168ft^(3). David measures the sides to be 
6.84ft by 
2.82ft by 
8.11ft. In calculating the volume, what is the relative error, to the nearest thousandth.
Answer:

The volume of a rectangular prism is 168ft3 168 \mathrm{ft}^{3} . David measures the sides to be 6.84ft 6.84 \mathrm{ft} by 2.82ft 2.82 \mathrm{ft} by 8.11ft 8.11 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 168ft3 168 \mathrm{ft}^{3} . David measures the sides to be 6.84ft 6.84 \mathrm{ft} by 2.82ft 2.82 \mathrm{ft} by 8.11ft 8.11 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Volume: Calculate the volume using the given measurements.\newlineWe will multiply the length, width, and height to find the calculated volume of the rectangular prism.\newlineCalculated Volume = Length ×\times Width ×\times Height\newlineCalculated Volume = 6.84ft×2.82ft×8.11ft6.84\,\text{ft} \times 2.82\,\text{ft} \times 8.11\,\text{ft}
  2. Perform Multiplication: Perform the multiplication to find the calculated volume.\newlineCalculated Volume = 6.84×2.82×8.116.84 \times 2.82 \times 8.11\newlineCalculated Volume = 155.66568ft3155.66568\text{ft}^3
  3. Find Absolute Error: Find the absolute error by subtracting the actual volume from the calculated volume.\newlineAbsolute Error = Calculated VolumeActual Volume|\text{Calculated Volume} - \text{Actual Volume}|\newlineAbsolute Error = 155.66568ft³168ft³|155.66568\text{ft}³ - 168\text{ft}³|
  4. Perform Subtraction: Perform the subtraction to find the absolute error.\newlineAbsolute Error = 155.66568ft3168ft3|155.66568\text{ft}^3 - 168\text{ft}^3|\newlineAbsolute Error = 12.33432ft3|-12.33432\text{ft}^3|\newlineAbsolute Error = 12.33432ft312.33432\text{ft}^3 (since absolute value is always positive)
  5. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the actual volume.\newlineRelative Error = Absolute ErrorActual Volume\frac{\text{Absolute Error}}{\text{Actual Volume}}\newlineRelative Error = 12.33432ft3168ft3\frac{12.33432\text{ft}^3}{168\text{ft}^3}
  6. Perform Division: Perform the division to find the relative error.\newlineRelative Error = 12.33432ft³168ft³\frac{12.33432\text{ft}³}{168\text{ft}³}\newlineRelative Error 0.07342\approx 0.07342 (to the nearest thousandth)

More problems from Find probabilities using the binomial distribution