Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The solutions to the inequality \newline(2-x)(x+1)x < 0 are:\newlineA: \newlinex > 2\newlineB: \newline0 < x < 1 or \newlinex > 2\newlineC: \newlinex < -1 or \newline0 < x < 2\newlineD: \newline-1 < x < 0 or \newlinex > 2\newlineE: \newline-1 < x < 0

Full solution

Q. The solutions to the inequality \newline(2x)(x+1)x<0(2-x)(x+1)x < 0 are:\newlineA: \newlinex>2x > 2\newlineB: \newline0<x<10 < x < 1 or \newlinex>2x > 2\newlineC: \newlinex<1x < -1 or \newline0<x<20 < x < 2\newlineD: \newline1<x<0-1 < x < 0 or \newlinex>2x > 2\newlineE: \newline1<x<0-1 < x < 0
  1. Identify critical points: Identify the critical points of the inequality by setting each factor to zero.\newline(2-x)(x+1)x < 0\newlineSet each factor to zero:\newline2x=0x=22 - x = 0 \Rightarrow x = 2\newlinex+1=0x=1x + 1 = 0 \Rightarrow x = -1\newlinex=0x = 0\newlineThe critical points are x=1x = -1, x=0x = 0, and x=2x = 2.
  2. Determine intervals: Determine the intervals to test around the critical points.\newlineThe intervals are:\newline(,1(-\infty, -1), (1,0(-1, 0), (0,2(0, 2), and (2,)(2, \infty).
  3. Test each interval: Test each interval to see if the inequality holds true. Choose a test point from each interval and plug it into the inequality. For (,1)(-\infty, -1), let's choose x=2x = -2: (2 - (-2))((-2) + 1)(-2) = (4)(-1)(-2) = 8 > 0, so this interval does not satisfy the inequality.
  4. Test (,1)(-\infty, -1): Test the interval (1,0)(-1, 0).\newlineChoose x=0.5x = -0.5:\newline(2 - (-0.5))((-0.5) + 1)(-0.5) = (2.5)(0.5)(-0.5) = -0.625 < 0, so this interval satisfies the inequality.
  5. Test (1,0)(-1, 0): Test the interval (0,2)(0, 2).\newlineChoose x=1x = 1:\newline(2 - 1)(1 + 1)(1) = (1)(2)(1) = 2 > 0, so this interval does not satisfy the inequality.
  6. Test (0,2)(0, 2): Test the interval (2,)(2, \infty).\newlineChoose x=3x = 3:\newline(2 - 3)(3 + 1)(3) = (-1)(4)(3) = -12 < 0, so this interval satisfies the inequality.
  7. Test (2,): (2, \infty): Combine the intervals that satisfy the inequality.\newlineFrom our tests, the intervals that satisfy the inequality are:\newline -1 < x < 0 and x > 2 .
  8. Combine intervals: Match the combined intervals with the given choices.\newlineThe correct answer is D: -1 < x < 0 or x > 2.

More problems from Solutions to inequalities