Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The radius of the Earth is about 
6.3 ×10^(3)km. Find its volume in terms of 
pi.

The radius of the Earth is about 6.3×103 km 6.3 \times 10^{3} \mathrm{~km} . Find its volume in terms of π \pi .

Full solution

Q. The radius of the Earth is about 6.3×103 km 6.3 \times 10^{3} \mathrm{~km} . Find its volume in terms of π \pi .
  1. Plug Radius into Formula: We know the formula for the volume of a sphere (Earth is approximately spherical) is V=43πr3V = \frac{4}{3}\pi r^3, where rr is the radius of the sphere. We are given the radius of the Earth as 6.3×1036.3 \times 10^3 km. Let's plug this value into the formula.
  2. Calculate Radius Cubed: First, we calculate r3r^3 (the radius cubed). The radius is 6.3×103km6.3 \times 10^3 \, \text{km}.\newline(6.3×103km)3=6.33×(103)3=250.047×109km3(6.3 \times 10^3 \, \text{km})^3 = 6.3^3 \times (10^3)^3 = 250.047 \times 10^9 \, \text{km}^3
  3. Substitute into Volume Formula: Now, we substitute the value of r3r^3 into the volume formula.\newlineV=(43)π(250.047×109 km3)V = \left(\frac{4}{3}\right)\pi(250.047 \times 10^9 \text{ km}^3)
  4. Simplify Constants: We can simplify this by multiplying the constants and keeping π\pi in the expression.V=(43)×π×250.047×109V = \left(\frac{4}{3}\right) \times \pi \times 250.047 \times 10^9 km3^3
  5. Multiply Numerical Values: Multiplying the numerical values together, we get:\newlineV43×π×250.047×109km3V \approx \frac{4}{3} \times \pi \times 250.047 \times 10^9 \, \text{km}^3\newlineV333.396×π×109km3V \approx 333.396 \times \pi \times 10^9 \, \text{km}^3
  6. Write Volume in Scientific Notation: We can write the volume in scientific notation for clarity:\newlineV3.334×102×π×109 km3V \approx 3.334 \times 10^2 \times \pi \times 10^9 \text{ km}^3\newlineV3.334×π×102+9 km3V \approx 3.334 \times \pi \times 10^{2+9} \text{ km}^3\newlineV3.334×π×1011 km3V \approx 3.334 \times \pi \times 10^{11} \text{ km}^3

More problems from Volume of cylinders