Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The midpoint of VW\overline{VW} is M(3,3)M(3,\,3). One endpoint is V(4,6)V(4,\,6). Find the coordinates of the other endpoint WW.\newlineWrite the coordinates as decimals or integers.\newlineW=(_,_)W = (\_,\,\_)

Full solution

Q. The midpoint of VW\overline{VW} is M(3,3)M(3,\,3). One endpoint is V(4,6)V(4,\,6). Find the coordinates of the other endpoint WW.\newlineWrite the coordinates as decimals or integers.\newlineW=(_,_)W = (\_,\,\_)
  1. Midpoint Formula: Identify the midpoint formula for a line segment.\newlineMidpoint is the average of the coordinates of the endpoints.\newlineMidpoint: ((x1+x2)/2,(y1+y2)/2)((x_1 + x_2)/2, (y_1 + y_2)/2)
  2. Equations for Midpoint: Endpoints: V(4,6)V(4, 6) and W(x2,y2)W(x_2, y_2)\newlineMidpoint: M(3,3)M(3, 3)\newlineSet up the equations that represent the midpoint of VW\overline{VW}.\newlineMidpoint = (3,3)(3, 3)\newline(x1,y1)=(4,6)(x_1, y_1) = (4, 6)\newlineEquation: (3,3)=(4+x22,6+y22)(3, 3) = \left(\frac{4 + x_2}{2}, \frac{6 + y_2}{2}\right)
  3. Solving for x-coordinate of W: 3=(4+x2)23 = \frac{(4 + x_2)}{2}\newlineSolve for the x-coordinate of W.\newline6=4+x26 = 4 + x_2\newlinex2=64x_2 = 6 - 4\newlinex2=2x_2 = 2\newlinex-coordinate of W: 22
  4. Solving for y-coordinate of W: 3=(6+y2)23 = \frac{(6 + y_2)}{2}\newlineSolve for the y-coordinate of W.\newline6=6+y26 = 6 + y_2\newliney2=66y_2 = 6 - 6\newliney2=0y_2 = 0\newliney-coordinate of W: 00
  5. Point W Coordinates: We know:\newlinex-coordinate of W: 22\newliney-coordinate of W: 00\newlineWrite the point W as an ordered pair.\newlineCoordinates of point W: (2,0)(2, 0)

More problems from Midpoint formula: find the endpoint