Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The functions p(x) p(x) and q(x) q(x) are differentiable. \newlineThe function r(x) r(x) is defined as: r(x)=p(x)q(x) r(x)= \frac{p(x)}{q(x)} \newlineIf p(3)=2 p(3)= 2 , p(3)=1 p'(3)= -1 , q(3)=4 q(3)= 4 , and q(3)=2 q'(3)= 2 , what is r(3) r'(3) ? \newlineSimplify any fractions. \newliner(3)=r'(3)= _____

Full solution

Q. The functions p(x) p(x) and q(x) q(x) are differentiable. \newlineThe function r(x) r(x) is defined as: r(x)=p(x)q(x) r(x)= \frac{p(x)}{q(x)} \newlineIf p(3)=2 p(3)= 2 , p(3)=1 p'(3)= -1 , q(3)=4 q(3)= 4 , and q(3)=2 q'(3)= 2 , what is r(3) r'(3) ? \newlineSimplify any fractions. \newliner(3)=r'(3)= _____
  1. Apply Quotient Rule: To find r(3)r'(3), we need to use the quotient rule for differentiation, which states that if r(x)=p(x)q(x)r(x) = \frac{p(x)}{q(x)}, then r(x)=p(x)q(x)p(x)q(x)(q(x))2r'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{(q(x))^2}. We will apply this rule using the given values for p(3)p(3), p(3)p'(3), q(3)q(3), and q(3)q'(3).
  2. Calculate Numerator: First, we calculate the numerator of the quotient rule: p(3)q(3)p(3)q(3)p'(3)q(3) - p(3)q'(3). Substituting the given values, we get: (1)(4)(2)(2)(-1)(4) - (2)(2).
  3. Calculate Denominator: Performing the multiplication, we find the numerator to be: 44=8-4 - 4 = -8.
  4. Find r(3)r'(3): Next, we calculate the denominator of the quotient rule: (q(3))2(q(3))^2. Substituting the given value for q(3)q(3), we get: (4)2(4)^2.
  5. Simplify Fraction: Calculating the square, we find the denominator to be: 1616.
  6. Simplify Fraction: Calculating the square, we find the denominator to be: 1616.Now, we can find r(3)r'(3) by dividing the numerator by the denominator: r(3)=816r'(3) = \frac{-8}{16}.
  7. Simplify Fraction: Calculating the square, we find the denominator to be: 1616.Now, we can find r(3)r'(3) by dividing the numerator by the denominator: r(3)=816r'(3) = -\frac{8}{16}.Simplifying the fraction, we get: r(3)=12r'(3) = -\frac{1}{2}.

More problems from Even and odd functions