Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The functions m(x) m(x) and n(x) n(x) are differentiable. \newlineThe function o(x) o(x) is defined as: o(x)=m(x)n(x) o(x)= \frac{m(x)}{n(x)} \newlineIf m(0)=1 m(0)= 1 , m(0)=4 m'(0)= 4 , n(0)=3 n(0)= 3 , and n(0)=2 n'(0)= -2 , what is o(0) o'(0) ? \newlineSimplify any fractions. \newlineo(0)= o'(0)= _____

Full solution

Q. The functions m(x) m(x) and n(x) n(x) are differentiable. \newlineThe function o(x) o(x) is defined as: o(x)=m(x)n(x) o(x)= \frac{m(x)}{n(x)} \newlineIf m(0)=1 m(0)= 1 , m(0)=4 m'(0)= 4 , n(0)=3 n(0)= 3 , and n(0)=2 n'(0)= -2 , what is o(0) o'(0) ? \newlineSimplify any fractions. \newlineo(0)= o'(0)= _____
  1. Apply Quotient Rule: To find o(0)o'(0), we need to use the quotient rule for differentiation, which states that if o(x)=m(x)n(x)o(x) = \frac{m(x)}{n(x)}, then o(x)=m(x)n(x)m(x)n(x)(n(x))2o'(x) = \frac{m'(x)n(x) - m(x)n'(x)}{(n(x))^2}. We will apply this rule at x=0x = 0.
  2. Calculate Numerator: First, we calculate the numerator of the quotient rule at x=0x = 0: m(0)n(0)m(0)n(0)=(4)(3)(1)(2)m'(0)n(0) - m(0)n'(0) = (4)(3) - (1)(-2).
  3. Calculate Denominator: Performing the multiplication, we get: (4)(3)(1)(2)=12(2)=12+2=14(4)(3) - (1)(-2) = 12 - (-2) = 12 + 2 = 14.
  4. Find o(0)o'(0): Next, we calculate the denominator of the quotient rule at x=0x = 0: (n(0))2=(3)2(n(0))^2 = (3)^2.
  5. Find o(0)o'(0): Next, we calculate the denominator of the quotient rule at x=0x = 0: (n(0))2=(3)2(n(0))^2 = (3)^2. Squaring n(0)n(0), we get: (3)2=9(3)^2 = 9.
  6. Find o(0)o'(0): Next, we calculate the denominator of the quotient rule at x=0x = 0: (n(0))2=(3)2(n(0))^2 = (3)^2. Squaring n(0)n(0), we get: (3)2=9(3)^2 = 9. Now we can put together the numerator and denominator to find o(0)o'(0): o(0)=149o'(0) = \frac{14}{9}.

More problems from Even and odd functions