Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The functions f(x) f(x) and g(x) g(x) are differentiable. \newlineThe function h(x) h(x) is defined as: h(x)=f(x)g(x) h(x)= \frac{f(x)}{g(x)} \newlineIf f(1)=6 f(-1)= 6 , f(1)=3 f'(-1)= -3 , g(1)=2 g(-1)= 2 , and g(1)=5 g'(-1)= 5 , what is h(1) h'(-1) ? \newlineSimplify any fractions. \newlineh(1)= h'(-1)= _____

Full solution

Q. The functions f(x) f(x) and g(x) g(x) are differentiable. \newlineThe function h(x) h(x) is defined as: h(x)=f(x)g(x) h(x)= \frac{f(x)}{g(x)} \newlineIf f(1)=6 f(-1)= 6 , f(1)=3 f'(-1)= -3 , g(1)=2 g(-1)= 2 , and g(1)=5 g'(-1)= 5 , what is h(1) h'(-1) ? \newlineSimplify any fractions. \newlineh(1)= h'(-1)= _____
  1. Quotient rule for differentiation: To find h(1)h'(-1), we need to use the quotient rule for differentiation, which states that if h(x)=f(x)g(x)h(x) = \frac{f(x)}{g(x)}, then h(x)=g(x)f(x)f(x)g(x)(g(x))2h'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}. We will apply this rule using the given values for f(1)f(-1), f(1)f'(-1), g(1)g(-1), and g(1)g'(-1).
  2. Calculate the numerator: First, we calculate the numerator of the derivative using the values provided: g(1)f(1)f(1)g(1)=(2)(3)(6)(5)g(-1)f'(-1) - f(-1)g'(-1) = (2)(-3) - (6)(5).
  3. Perform multiplication: Performing the multiplication, we get: (2)(3)(6)(5)=630=36(2)(-3) - (6)(5) = -6 - 30 = -36.
  4. Calculate the denominator: Next, we calculate the denominator of the derivative, which is (g(1))2(g(-1))^2. Since g(1)=2g(-1) = 2, we have (2)2=4(2)^2 = 4.
  5. Find h(1)h'(-1): Now we can put together the numerator and the denominator to find h(1)h'(-1): h(1)=364h'(-1) = \frac{-36}{4}.
  6. Divide to get the final result: Dividing 36-36 by 44 gives us h(1)=9h'(-1) = -9.

More problems from Even and odd functions