Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

the area of al rectangular plate is 407m2\frac{40}{7}\,\text{m}^2 and its length is 154m\frac{15}{4}\,\text{m}. find its breadth and perimeter

Full solution

Q. the area of al rectangular plate is 407m2\frac{40}{7}\,\text{m}^2 and its length is 154m\frac{15}{4}\,\text{m}. find its breadth and perimeter
  1. Calculate Breadth: To find the breadth, we need to divide the area by the length.\newlineArea=Length×Breadth\text{Area} = \text{Length} \times \text{Breadth}\newlineSo, Breadth=AreaLength\text{Breadth} = \frac{\text{Area}}{\text{Length}}\newlineWe are given that the Area=407m2\text{Area} = \frac{40}{7} \, \text{m}^2 and the Length=154m\text{Length} = \frac{15}{4} \, \text{m}.\newlineNow we calculate the breadth.\newlineBreadth=407/154\text{Breadth} = \frac{40}{7} / \frac{15}{4}\newlineBreadth=407×415\text{Breadth} = \frac{40}{7} \times \frac{4}{15}\newlineBreadth=160105\text{Breadth} = \frac{160}{105}\newlineBreadth=3221\text{Breadth} = \frac{32}{21}
  2. Find Perimeter: Now that we have the breadth, we can find the perimeter of the rectangle.\newlinePerimeter = 2×(Length+Breadth)2 \times (\text{Length} + \text{Breadth})\newlineWe know that Length = 154\frac{15}{4} m and Breadth = 3221\frac{32}{21} m.\newlineNow we calculate the perimeter.\newlinePerimeter = 2×((154)+(3221))2 \times (\left(\frac{15}{4}\right) + \left(\frac{32}{21}\right))\newlineTo add these two fractions, we need a common denominator, which would be 4×21=844\times21 = 84.\newlinePerimeter = 2×((15×2184)+(32×484))2 \times (\left(\frac{15\times21}{84}\right) + \left(\frac{32\times4}{84}\right))\newlinePerimeter = 2×((31584)+(12884))2 \times (\left(\frac{315}{84}\right) + \left(\frac{128}{84}\right))\newlinePerimeter = 2×(44384)2 \times \left(\frac{443}{84}\right)\newlinePerimeter = 88684\frac{886}{84}\newlinePerimeter = 44342\frac{443}{42}

More problems from Volume of cubes and rectangular prisms: word problems