Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
10cm by 
9cm. Carter measures the sides to be 
9.9cm by 
8.97cm. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 10 cm 10 \mathrm{~cm} by 9 cm 9 \mathrm{~cm} . Carter measures the sides to be 9.9 cm 9.9 \mathrm{~cm} by 8.97 cm 8.97 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 10 cm 10 \mathrm{~cm} by 9 cm 9 \mathrm{~cm} . Carter measures the sides to be 9.9 cm 9.9 \mathrm{~cm} by 8.97 cm 8.97 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate actual area: Calculate the actual area of the rectangle.\newlineThe formula for the area of a rectangle is length×width\text{length} \times \text{width}.\newlineActual area = 10cm×9cm10 \, \text{cm} \times 9 \, \text{cm}.
  2. Perform actual area calculation: Perform the calculation for the actual area.\newlineActual area = 10cm×9cm=90cm210\,\text{cm} \times 9\,\text{cm} = 90\,\text{cm}^2.
  3. Calculate measured area: Calculate the measured area of the rectangle.\newlineMeasured area = 9.9cm×8.97cm9.9\,\text{cm} \times 8.97\,\text{cm}.
  4. Perform measured area calculation: Perform the calculation for the measured area.\newlineMeasured area = 9.9cm×8.97cm=88.803cm29.9\,\text{cm} \times 8.97\,\text{cm} = 88.803\,\text{cm}^2.
  5. Calculate absolute error: Calculate the absolute error in the area.\newlineAbsolute error = Actual areaMeasured area|\text{Actual area} - \text{Measured area}|.
  6. Perform absolute error calculation: Perform the calculation for the absolute error.\newlineAbsolute error = 90cm288.803cm2=1.197cm2|90 \, \text{cm}^2 - 88.803 \, \text{cm}^2| = 1.197 \, \text{cm}^2.
  7. Calculate relative error: Calculate the relative error.\newlineRelative error = Absolute errorActual area\frac{\text{Absolute error}}{\text{Actual area}}.
  8. Perform relative error calculation: Perform the calculation for the relative error. Relative error = 1.197cm290cm2.\frac{1.197 \, \text{cm}^2}{90 \, \text{cm}^2}.
  9. Evaluate relative error: Evaluate the relative error to the nearest thousandth.\newlineRelative error 0.0133\approx 0.0133 (rounded to the nearest thousandth).

More problems from Find probabilities using the binomial distribution