Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use the disk method to find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the x-axis.
y=(1)/(sqrt(1+x^(2))),quad y=0,quad x=-1,quad x=1

Use the disk method to find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the x x -axis.\newliney=11+x2,y=0,x=1,x=1 y=\frac{1}{\sqrt{1+x^{2}}}, \quad y=0, \quad x=-1, \quad x=1

Full solution

Q. Use the disk method to find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the x x -axis.\newliney=11+x2,y=0,x=1,x=1 y=\frac{1}{\sqrt{1+x^{2}}}, \quad y=0, \quad x=-1, \quad x=1
  1. Set up integral: Set up the integral for the volume using the disk method.\newlineThe volume V of a solid of revolution generated by revolving a region about the x-axis can be found using the formula:\newlineV=πab[f(x)]2dx V = \pi \int_{a}^{b} [f(x)]^2 dx \newlinewhere f(x) f(x) is the function that defines the upper boundary of the region being revolved, and a a and b b are the limits of integration along the x-axis.\newlineFor the given problem, f(x)=11+x2 f(x) = \frac{1}{\sqrt{1+x^2}} , a=1 a = -1 , and b=1 b = 1 .\newlineSo, the integral to find the volume is:\newlineV=π11(11+x2)2dx V = \pi \int_{-1}^{1} \left(\frac{1}{\sqrt{1+x^2}}\right)^2 dx
  2. Simplify integrand: Simplify the integrand before integrating.\newlineThe integrand simplifies to:\newline(11+x2)2=11+x2 \left(\frac{1}{\sqrt{1+x^2}}\right)^2 = \frac{1}{1+x^2} \newlineSo the integral becomes:\newlineV=π1111+x2dx V = \pi \int_{-1}^{1} \frac{1}{1+x^2} dx
  3. Integrate function: Integrate the function.\newlineThe integral of 11+x2 \frac{1}{1+x^2} is arctan(x) \arctan(x) , so we have:\newlineV=π[arctan(x)]11 V = \pi \left[ \arctan(x) \right]_{-1}^{1}
  4. Evaluate integral: Evaluate the integral from a=1 a = -1 to b=1 b = 1 .\newlineV=π[arctan(1)arctan(1)] V = \pi \left[ \arctan(1) - \arctan(-1) \right] \newlineSince arctan(1)=π4 \arctan(1) = \frac{\pi}{4} and arctan(1)=π4 \arctan(-1) = -\frac{\pi}{4} , we have:\newlineV=π[π4(π4)] V = \pi \left[ \frac{\pi}{4} - (-\frac{\pi}{4}) \right] \newlineV=π[π4+π4] V = \pi \left[ \frac{\pi}{4} + \frac{\pi}{4} \right] \newlineV=π[π2] V = \pi \left[ \frac{\pi}{2} \right] \newlineV=π22 V = \frac{\pi^2}{2}

More problems from One-step inequalities: word problems