Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Determine the solutions of each
quadratic equation
using the factoring method.
\newline
x
2
−
3
x
−
4
=
0
x^{2}-3x-4=0
x
2
−
3
x
−
4
=
0
View step-by-step help
Home
Math Problems
Precalculus
Factor sums and differences of cubes
Full solution
Q.
Determine the solutions of each quadratic equation using the factoring method.
\newline
x
2
−
3
x
−
4
=
0
x^{2}-3x-4=0
x
2
−
3
x
−
4
=
0
Factorize Quadratic Equation:
Factorize the first quadratic equation
x
2
+
5
x
+
6
=
0
x^2 + 5x + 6 = 0
x
2
+
5
x
+
6
=
0
.
\newline
(
x
+
3
)
(
x
+
2
)
=
0
(x + 3)(x + 2) = 0
(
x
+
3
)
(
x
+
2
)
=
0
, because
3
×
2
=
6
3 \times 2 = 6
3
×
2
=
6
and
3
+
2
=
5
3 + 2 = 5
3
+
2
=
5
.
Solve for x:
Solve for x from the
factors
of the first equation.
\newline
x
+
3
=
0
→
x
=
−
3
x + 3 = 0 \rightarrow x = -3
x
+
3
=
0
→
x
=
−
3
\newline
x
+
2
=
0
→
x
=
−
2
x + 2 = 0 \rightarrow x = -2
x
+
2
=
0
→
x
=
−
2
Factorize Second Equation:
Factorize the second quadratic equation
x
2
−
3
x
−
4
=
0
x^2 - 3x - 4 = 0
x
2
−
3
x
−
4
=
0
.
\newline
(
x
−
4
)
(
x
+
1
)
=
0
(x - 4)(x + 1) = 0
(
x
−
4
)
(
x
+
1
)
=
0
, because
−
4
×
1
=
−
4
-4 \times 1 = -4
−
4
×
1
=
−
4
and
−
4
+
1
=
−
3
-4 + 1 = -3
−
4
+
1
=
−
3
.
Solve for x:
Solve for x from the factors of the second equation.
\newline
x
−
4
=
0
→
x
=
4
x - 4 = 0 \rightarrow x = 4
x
−
4
=
0
→
x
=
4
\newline
x
+
1
=
0
→
x
=
−
1
x + 1 = 0 \rightarrow x = -1
x
+
1
=
0
→
x
=
−
1
More problems from Factor sums and differences of cubes
Question
Find the degree of this polynomial.
\newline
`5b^{10} + 3b^3`
\newline
_______
Get tutor help
Posted 5 months ago
Question
Subtract.
\newline
(
9
a
+
5
)
−
(
2
a
+
4
)
(9a + 5) - (2a + 4)
(
9
a
+
5
)
−
(
2
a
+
4
)
\newline
____
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
v
2
(
v
2
−
9
)
-3v^2(v^2 - 9)
−
3
v
2
(
v
2
−
9
)
\newline
________
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
(
v
−
3
)
(
4
v
+
1
)
(v - 3)(4v + 1)
(
v
−
3
)
(
4
v
+
1
)
\newline
______
Get tutor help
Posted 5 months ago
Question
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Posted 5 months ago
Question
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
t
2
+
36
t
)
÷
6
t
(24t^2 + 36t) \div 6t
(
24
t
2
+
36
t
)
÷
6
t
\newline
______
Get tutor help
Posted 5 months ago
Question
Is the function
q
(
x
)
=
x
6
−
9
q(x) = x^6 - 9
q
(
x
)
=
x
6
−
9
even, odd, or neither?
\newline
Choices:
\newline
[[even][odd][neither]]
\text{[[even][odd][neither]]}
[[even][odd][neither]]
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
q
2
(
−
3
q
2
+
q
)
-3q^2(-3q^2 + q)
−
3
q
2
(
−
3
q
2
+
q
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
(
r
+
3
)
(
4
r
+
2
)
(r + 3)(4r + 2)
(
r
+
3
)
(
4
r
+
2
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the roots of the factored polynomial.
\newline
(
x
+
7
)
(
x
+
4
)
(x + 7)(x + 4)
(
x
+
7
)
(
x
+
4
)
\newline
Write your answer as a list of values separated by commas.
\newline
x
=
x =
x
=
____
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant