Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newlinem2+8m+9=0m^{2}+8m+9=0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinem= or m=m=\square \text{ or } m=

Full solution

Q. Solve using the quadratic formula.\newlinem2+8m+9=0m^{2}+8m+9=0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinem= or m=m=\square \text{ or } m=
  1. Identify coefficients: Identify the coefficients of the quadratic equation.\newlineThe quadratic equation is in the form of ax2+bx+c=0ax^2 + bx + c = 0. For the equation m2+8m+9=0m^2 + 8m + 9 = 0, the coefficients are:\newlinea = 11 (coefficient of m2m^2)\newlineb = 88 (coefficient of mm)\newlinec = 99 (constant term)
  2. Write formula: Write down the quadratic formula.\newlineThe quadratic formula is m=b±b24ac2am = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
  3. Substitute coefficients: Substitute the coefficients into the quadratic formula.\newlineUsing the values of aa, bb, and cc from Step 11, we get:\newlinem=((8)±(8)24(1)(9))/(2(1))m = (-(8) \pm \sqrt{(8)^2 - 4(1)(9)}) / (2(1))
  4. Simplify square root: Simplify under the square root.\newlineCalculate the discriminant (the expression under the square root):\newline(8)24(1)(9)=6436=28(8)^2 - 4(1)(9) = 64 - 36 = 28
  5. Insert discriminant: Insert the discriminant into the formula.\newlinem=8±282m = \frac{-8 \pm \sqrt{28}}{2}
  6. Simplify equation: Simplify the square root.\newline28\sqrt{28} can be simplified to (4×7)\sqrt{(4\times7)} which is 272\sqrt{7}.\newlinem=8±272m = \frac{-8 \pm 2\sqrt{7}}{2}
  7. Write solutions: Simplify the equation by dividing by 22.\newlinem=4±72m = \frac{-4 \pm \sqrt{7}}{2}
  8. Write solutions: Simplify the equation by dividing by 22.m=(4±7)m = (-4 \pm \sqrt{7})Write the final solutions. The solutions are m=4+7m = -4 + \sqrt{7} and m=47m = -4 - \sqrt{7}. These cannot be simplified to integers or fractions, so we will leave them in this form or convert them to decimal form if necessary.

More problems from Solve a quadratic equation using the quadratic formula