Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
m=x^(2)+3.
Which equation is equivalent to 
(x^(2)+3)^(2)+7x^(2)+21=-10 in terms of 
m ?
Choose 1 answer:
(A) 
m^(2)-7m+31=0
(B) 
m^(2)+7m+31=0
(C) 
m^(2)-7m+10=0
(D) 
m^(2)+7m+10=0

Let m=x2+3m=x^{2}+3. Which equation is equivalent to (x2+3)2+7x2+21=10(x^{2}+3)^{2}+7x^{2}+21=-10 in terms of mm? Choose 11 answer:\newline(A) m27m+31=0m^{2}-7m+31=0\newline(B) m2+7m+31=0m^{2}+7m+31=0\newline(C) m27m+10=0m^{2}-7m+10=0\newline(D) m2+7m+10=0m^{2}+7m+10=0

Full solution

Q. Let m=x2+3m=x^{2}+3. Which equation is equivalent to (x2+3)2+7x2+21=10(x^{2}+3)^{2}+7x^{2}+21=-10 in terms of mm? Choose 11 answer:\newline(A) m27m+31=0m^{2}-7m+31=0\newline(B) m2+7m+31=0m^{2}+7m+31=0\newline(C) m27m+10=0m^{2}-7m+10=0\newline(D) m2+7m+10=0m^{2}+7m+10=0
  1. Substitute mm into equation: We are given m=x2+3m = x^{2} + 3. Let's substitute mm into the given equation (x2+3)2+7x2+21=10(x^{2}+3)^{2}+7x^{2}+21=-10 to find the equivalent equation in terms of mm.
  2. Expand and simplify: First, we substitute mm for x2+3x^{2} + 3 in the equation:\newline(m)2+7x2+21=10(m)^{2} + 7x^{2} + 21 = -10
  3. Combine like terms: Since m=x2+3m = x^{2} + 3, we can also substitute m3m - 3 for x2x^{2} in the equation:\newline(m)2+7(m3)+21=10(m)^{2} + 7(m - 3) + 21 = -10
  4. Add to both sides: Now, let's expand and simplify the equation: m2+7m21+21=10m^{2} + 7m - 21 + 21 = -10
  5. Add to both sides: Now, let's expand and simplify the equation:\newlinem2+7m21+21=10m^2 + 7m - 21 + 21 = -10Combine like terms:\newlinem2+7m=10m^2 + 7m = -10
  6. Add to both sides: Now, let's expand and simplify the equation:\newlinem2+7m21+21=10m^2 + 7m - 21 + 21 = -10Combine like terms:\newlinem2+7m=10m^2 + 7m = -10To get the equation in standard form, we add 1010 to both sides of the equation:\newlinem2+7m+10=0m^2 + 7m + 10 = 0

More problems from Solve a quadratic equation by factoring