Solve using the quadratic formula.9g2−8g−3=0Write your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.g=_____ or g=_____
Q. Solve using the quadratic formula.9g2−8g−3=0Write your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.g=_____ or g=_____
Identify values of a, b, c: Identify the values of a, b, and c in the quadratic equation9g2−8g−3=0. By comparing the equation to the standard form ax2+bx+c=0, we find: a=9b=−8b0
Substitute values into formula: Substitute the values of a, b, and c into the quadratic formula to find g. The quadratic formula is g=2a−b±b2−4ac. So we have: g=2⋅9−(−8)±(−8)2−4⋅9⋅(−3)
Simplify expression and constants: Simplify the expression under the square root and the constants outside the square root.Calculate the discriminant b2−4ac:Discriminant = (−8)2−4⋅9⋅(−3)Discriminant = 64+108Discriminant = 172Now, simplify the constants:g=188±172
Simplify square root: Simplify the square root of the discriminant, if possible.Since 172 is not a perfect square, we cannot simplify the square root further. Therefore, we have:g=(8±172)/18
Identify possible values for g: Identify the two possible values for g. We have two solutions for g, corresponding to the '±' in the quadratic formula: g=188+172 or g=188−172
Approximate values of g: Simplify the fractions or round the values of g to the nearest hundredth, if necessary.First, let's approximate 172 to the nearest hundredth:172≈13.11Now, calculate the approximate values of g:g≈(8+13.11)/18 or g≈(8−13.11)/18g≈21.11/18 or g≈−5.11/18g≈1.17 or g0
More problems from Solve a quadratic equation using the quadratic formula