Solve using the quadratic formula.4h2+3h−5=0Write your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.h=_____ or h=_____
Q. Solve using the quadratic formula.4h2+3h−5=0Write your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.h=_____ or h=_____
Identify values: Identify the values of a, b, and c in the quadratic equation4h2+3h−5=0. By comparing the equation to the standard form ax2+bx+c=0, we find: a=4b=3c=−5
Substitute values: Substitute the values of a, b, and c into the quadratic formula to find h. The quadratic formula is h=2a−b±b2−4ac. So we have: h=2⋅4−(3)±(3)2−4⋅4⋅(−5)
Simplify discriminant: Simplify the expression under the square root (the discriminant). (3)2−4⋅4⋅(−5)=9+80=89
Continue with formula: Continue with the quadratic formula using the simplified discriminant. h=8−3±89This gives us two possible solutions for h.
Calculate possible values: Calculate the two possible values for h.First solution:h=8−3+89Second solution:h=8−3−89
Round to nearest hundredth: Round the values of h to the nearest hundredth, if necessary.First solution:h≈(−3+9.43)/8h≈6.43/8h≈0.80Second solution:h≈(−3−9.43)/8h≈−12.43/8h≈−1.55
More problems from Solve a quadratic equation using the quadratic formula