Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline4g24g3=04g^2 - 4g - 3 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlineg=g = _____ or g=g = _____

Full solution

Q. Solve using the quadratic formula.\newline4g24g3=04g^2 - 4g - 3 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlineg=g = _____ or g=g = _____
  1. Identify values of aa, bb, cc: Identify the values of aa, bb, and cc in the quadratic equation 4g24g3=04g^2 − 4g − 3 = 0. The quadratic equation is in the form ag2+bg+c=0ag^2 + bg + c = 0, so by comparison: a=4a = 4 b=4b = -4 bb00
  2. Substitute values into formula: Substitute the values of aa, bb, and cc into the quadratic formula to find gg. The quadratic formula is g=b±b24ac2ag = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Substituting the values we get: g=(4)±(4)244(3)24g = \frac{-(-4) \pm \sqrt{(-4)^2 - 4\cdot4\cdot(-3)}}{2\cdot4}
  3. Simplify discriminant: Simplify the expression under the square root (the discriminant). (4)244(3)=16+48=64\sqrt{(-4)^2 - 4\cdot 4\cdot (-3)} = \sqrt{16 + 48} = \sqrt{64}
  4. Continue simplifying formula: Continue simplifying the quadratic formula with the calculated discriminant. g=4±648g = \frac{4 \pm \sqrt{64}}{8}
  5. Solve for possible values: Solve for the two possible values of gg.g=4+88g = \frac{4 + 8}{8} or g=488g = \frac{4 - 8}{8}g=128g = \frac{12}{8} or g=48g = \frac{-4}{8}
  6. Simplify final answers: Simplify the fractions to get the final answers.\newlineg=128g = \frac{12}{8} simplifies to g=32g = \frac{3}{2} or g=1.5g = 1.5\newlineg=48g = \frac{-4}{8} simplifies to g=12g = \frac{-1}{2} or g=0.5g = -0.5

More problems from Solve a quadratic equation using the quadratic formula