Solve using the quadratic formula.2u2+7u+1=0Write your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.u=_____ or u=_____
Q. Solve using the quadratic formula.2u2+7u+1=0Write your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.u=_____ or u=_____
Identify values: Identify the values of a, b, and c in the quadratic equation2u2+7u+1=0. The quadratic equation is in the form au2+bu+c=0. Here, a=2, b=7, and c=1.
Substitute values: Substitute the values of a, b, and c into the quadratic formula u=2a−b±b2−4ac. Using a=2, b=7, and c=1, we get: u=2⋅2−(7)±(7)2−4⋅2⋅1
Simplify discriminant: Simplify the expression under the square root (the discriminant). (7)2−4⋅2⋅1=49−8=41
Substitute discriminant: Substitute the discriminant back into the quadratic formula.u=4−7±41
Calculate possible values: Calculate the two possible values for u.First solution:u=4−7+41Second solution:u=4−7−41
Round values: Round the values of u to the nearest hundredth, if necessary.First solution:u≈(−7+6.40)/4u≈−0.60/4u≈−0.15Second solution:u≈(−7−6.40)/4u≈−13.40/4$u \approx \(-3\).\(35\)
More problems from Solve a quadratic equation using the quadratic formula