Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline2d28d+6=02d^2 - 8d + 6 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlined = _____ or d = _____

Full solution

Q. Solve using the quadratic formula.\newline2d28d+6=02d^2 - 8d + 6 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlined = _____ or d = _____
  1. Identify values: Identify the values of aa, bb, and cc in the quadratic equation 2d28d+6=02d^2 - 8d + 6 = 0 by comparing it to the standard form ax2+bx+c=0ax^2 + bx + c = 0.\newlinea=2a = 2\newlineb=8b = -8\newlinec=6c = 6
  2. Substitute in formula: Substitute the values of aa, bb, and cc into the quadratic formula to find dd.d=b±b24ac2ad = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}d=(8)±(8)242622d = \frac{-(-8) \pm \sqrt{(-8)^2 - 4\cdot2\cdot6}}{2\cdot2}
  3. Simplify terms: Simplify the terms under the square root and the constants outside the square root. \newlined=8±64484d = \frac{8 \pm \sqrt{64 - 48}}{4}\newlined=8±164d = \frac{8 \pm \sqrt{16}}{4}
  4. Calculate square root: Calculate the square root of 1616 and simplify the expression further.\newlined=(8±4)4d = \frac{(8 \pm 4)} {4}\newlineIdentify the two possible values for dd.\newlined=(8+4)4d = \frac{(8 + 4)} {4}or d=(84)4d = \frac{(8 - 4)} {4}
  5. Identify possible values: Solve for the two values of dd.\newlined=124d = \frac{12}{4} or \newlined=44d = \frac{4}{4}\newlined=3d = 3, or d=1d = 1

More problems from Solve a quadratic equation using the quadratic formula