Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system.

{:[x+5y-z=,-6],[-4x-y+z=,18],[x-y+5z=,6]:}

Solve the system.\newlinex+5yz=amp;64xy+z=amp;18xy+5z=amp;6 \begin{array}{rr} x+5 y-z= & -6 \\ -4 x-y+z= & 18 \\ x-y+5 z= & 6 \end{array}

Full solution

Q. Solve the system.\newlinex+5yz=64xy+z=18xy+5z=6 \begin{array}{rr} x+5 y-z= & -6 \\ -4 x-y+z= & 18 \\ x-y+5 z= & 6 \end{array}
  1. Write Equations: Write down the system of equations to be solved.\newlinex+5yzamp;=64xy+zamp;=18xy+5zamp;=6 \begin{align*} x + 5y - z &= -6 \\ -4x - y + z &= 18 \\ x - y + 5z &= 6 \end{align*}
  2. Eliminate Variable x: Choose two equations to eliminate one variable. We will use the first and the third equations to eliminate the variable xx.\newlinex+5yzamp;=6xy+5zamp;=6 \begin{align*} x + 5y - z &= -6 \\ x - y + 5z &= 6 \end{align*} \newlineSubtract the third equation from the first to eliminate xx.\newline(5yz)(y+5z)=66 (5y - z) - (-y + 5z) = -6 - 6
  3. Combine Equations: Perform the subtraction to find an equation in terms of yy and zz.\newline5yz+y5z=12 5y - z + y - 5z = -12 \newlineCombine like terms.\newline6y6z=12 6y - 6z = -12
  4. Simplify Equation: Simplify the equation by dividing all terms by 66.\newlineyz=2 y - z = -2 \newlineThis is our fourth equation.
  5. Eliminate Variable x: Now, choose two other equations to eliminate the same variable xx. We will use the second and the third equations.\newline4xy+zamp;=18xy+5zamp;=6 \begin{align*} -4x - y + z &= 18 \\ x - y + 5z &= 6 \end{align*} \newlineMultiply the third equation by 44 to make the coefficients of xx opposites.\newline4xy+zamp;=184x4y+20zamp;=24 \begin{align*} -4x - y + z &= 18 \\ 4x - 4y + 20z &= 24 \end{align*}
  6. Combine Equations: Add the modified third equation to the second to eliminate xx.\newline(4xy+z)+(4x4y+20z)=18+24 (-4x - y + z) + (4x - 4y + 20z) = 18 + 24 \newlinePerform the addition.\newline5y+21z=42 -5y + 21z = 42
  7. Simplify Equation: Simplify the equation by dividing all terms by 5-5.\newliney215z=425 y - \frac{21}{5}z = -\frac{42}{5} \newlineThis is our fifth equation.
  8. Eliminate Variable y: We now have two equations with just yy and zz:\newlineyzamp;=2y215zamp;=425 \begin{align*} y - z &= -2 \\ y - \frac{21}{5}z &= -\frac{42}{5} \end{align*} \newlineSubtract the first equation from the second to eliminate yy.\newline(y215z)(yz)=425(2) \left(y - \frac{21}{5}z\right) - (y - z) = -\frac{42}{5} - (-2)
  9. Combine Equations: Perform the subtraction to find an equation in terms of zz.\newline215z+z=425+2 -\frac{21}{5}z + z = -\frac{42}{5} + 2 \newlineCombine like terms.\newline165z=325 -\frac{16}{5}z = -\frac{32}{5}
  10. Solve for z: Solve for zz by dividing both sides by 165-\frac{16}{5}.\newlinez=325165=2 z = \frac{-\frac{32}{5}}{-\frac{16}{5}} = 2
  11. Find y: Substitute z=2z = 2 into the fourth equation to find yy.\newlineyz=2 y - z = -2 \newliney2=2 y - 2 = -2 \newlineAdd 22 to both sides.\newliney=0 y = 0
  12. Substitute and Find x: Substitute y=0y = 0 and z=2z = 2 into one of the original equations to find xx. We will use the first equation.\newlinex+5yz=6 x + 5y - z = -6 \newlinex+5(0)2=6 x + 5(0) - 2 = -6 \newlineSimplify.\newlinex2=6 x - 2 = -6 \newlineAdd 22 to both sides.\newlinex=4 x = -4