Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system using inverse matrices.

{[9x+6y=0],[x+y=-1]:}

Solve the system using inverse matrices.\newline{9x+6y=0x+y=1 \left\{\begin{array}{c} 9 x+6 y=0 \\ x+y=-1 \end{array}\right.

Full solution

Q. Solve the system using inverse matrices.\newline{9x+6y=0x+y=1 \left\{\begin{array}{c} 9 x+6 y=0 \\ x+y=-1 \end{array}\right.
  1. Write Equations in Matrix Form: First, we need to write the system of equations in matrix form. The system is:\newline9x+6yamp;=0x+yamp;=1 \begin{align*} 9x + 6y &= 0 \\ x + y &= -1 \end{align*} \newlineThis can be written in matrix form as:\newline[9amp;61amp;1][xy]=[01] \begin{bmatrix} 9 & 6 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \newlineLet's denote the coefficient matrix as A, the variable matrix as X, and the constant matrix as B:\newlineA=[9amp;61amp;1],X=[xy],B=[01] A = \begin{bmatrix} 9 & 6 \\ 1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ -1 \end{bmatrix}
  2. Find Determinant of A: Next, we need to find the inverse of matrix A, denoted as A1 A^{-1} . To find the inverse, we need to calculate the determinant of A and then use it to find the adjugate matrix.\newlineThe determinant of A, denoted as det(A), is:\newlinedet(A)=(9)(1)(6)(1)=96=3 \text{det}(A) = (9)(1) - (6)(1) = 9 - 6 = 3
  3. Find Adjugate of A: Since the determinant is not zero, A is invertible. Now we need to find the adjugate of A, which involves finding the matrix of cofactors and then transposing it.\newlineThe matrix of cofactors for A is:\newlineCof(A)=[1amp;61amp;9] \text{Cof}(A) = \begin{bmatrix} 1 & -6 \\ -1 & 9 \end{bmatrix} \newlineNow we transpose it to get the adjugate matrix, denoted as adj(A):\newlineadj(A)=[1amp;16amp;9] \text{adj}(A) = \begin{bmatrix} 1 & -1 \\ -6 & 9 \end{bmatrix}
  4. Find Inverse of A: Now we can find the inverse of A by dividing the adjugate of A by the determinant of A:\newlineA1=1det(A)adj(A)=13[1amp;16amp;9]=[1/3amp;1/32amp;3] A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ -6 & 9 \end{bmatrix} = \begin{bmatrix} 1/3 & -1/3 \\ -2 & 3 \end{bmatrix}
  5. Solve for X: We can now solve for X by multiplying the inverse of A with B:\newlineX=A1B=[1/3amp;1/32amp;3][01]=[(1/3)(0)+(1/3)(1)(2)(0)+(3)(1)]=[1/33] X = A^{-1}B = \begin{bmatrix} 1/3 & -1/3 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} (1/3)(0) + (-1/3)(-1) \\ (-2)(0) + (3)(-1) \end{bmatrix} = \begin{bmatrix} 1/3 \\ -3 \end{bmatrix}
  6. Final Solution: The solution to the system of equations is:\newlinex=1/3,y=3 x = 1/3, \quad y = -3