Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of linear equations and check any solutions algebraically. (If the the system is dependent, express 
x,y, and 
z in terms of the parameter a.)

{[x-3y+2z=18],[5x-13 y+12 z=100]:}

Solve the system of linear equations and check any solutions algebraically. (If the the system is dependent, express x,y x, y , and z z in terms of the parameter a.)\newline{x3y+2z=185x13y+12z=100 \left\{\begin{array}{r} x-3 y+2 z=18 \\ 5 x-13 y+12 z=100 \end{array}\right.

Full solution

Q. Solve the system of linear equations and check any solutions algebraically. (If the the system is dependent, express x,y x, y , and z z in terms of the parameter a.)\newline{x3y+2z=185x13y+12z=100 \left\{\begin{array}{r} x-3 y+2 z=18 \\ 5 x-13 y+12 z=100 \end{array}\right.
  1. Write Equations: Write down the system of equations.\newlineWe have the following system of equations:\newline11) x3y+2z=18x - 3y + 2z = 18\newline22) 5x13y+12z=1005x - 13y + 12z = 100
  2. Multiply and Prepare: Multiply the first equation by 55 to prepare for elimination with the second equation.\newline5(x3y+2z)=5(18)5(x - 3y + 2z) = 5(18)\newlineThis gives us:\newline5x15y+10z=905x - 15y + 10z = 90
  3. Eliminate x: Subtract the new equation from the second equation in the system to eliminate x.\newline(5x13y+12z)(5x15y+10z)=10090(5x - 13y + 12z) - (5x - 15y + 10z) = 100 - 90\newlineThis simplifies to:\newline2y+2z=102y + 2z = 10
  4. Simplify Equation: Simplify the equation from Step 33.\newlineDivide the entire equation by 22 to simplify:\newliney+z=5y + z = 5
  5. Express yy in terms of zz: Express yy in terms of zz. Let's use zz as our parameter (we can call it aa). y=5ay = 5 - a
  6. Substitute yy into 11st equation: Substitute y=5ay = 5 - a into the first original equation.x3(5a)+2a=18x - 3(5 - a) + 2a = 18This simplifies to:x15+3a+2a=18x - 15 + 3a + 2a = 18
  7. Solve for x: Solve for x in terms of a.\newlinex+5a=18+15x + 5a = 18 + 15\newlinex+5a=33x + 5a = 33\newlinex=335ax = 33 - 5a
  8. Final Solution: Write the final solution in terms of the parameter aa. We have: x=335ax = 33 - 5a y=5ay = 5 - a z=az = a
  9. Check Solution: Check the solution by substituting xx, yy, and zz back into the original equations.\newlineSubstitute into the first equation:\newline(335a)3(5a)+2a=18(33 - 5a) - 3(5 - a) + 2a = 18\newline335a15+3a+2a=1833 - 5a - 15 + 3a + 2a = 18\newline3315=1833 - 15 = 18\newline18=1818 = 18 (True)\newlineSubstitute into the second equation:\newline5(335a)13(5a)+12a=1005(33 - 5a) - 13(5 - a) + 12a = 100\newline16525a65+13a+12a=100165 - 25a - 65 + 13a + 12a = 100\newline16565=100165 - 65 = 100 (True)