Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.
{:[-4x+7y=20],[y=3x+15],[x=◻],[y=◻]:}

Solve the system of equations.\newline4x+7y=20y=3x+15x=y= \begin{array}{l} -4 x+7 y=20 \\ y=3 x+15 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline4x+7y=20y=3x+15x=y= \begin{array}{l} -4 x+7 y=20 \\ y=3 x+15 \\ x=\square \\ y=\square \end{array}
  1. Substitute Equations: Substitute the second equation into the first equation.\newlineWe have the system of equations:\newline4x+7y=20-4x + 7y = 20\newliney=3x+15y = 3x + 15\newlineSubstitute yy from the second equation into the first equation to eliminate yy and solve for xx.\newline4x+7(3x+15)=20-4x + 7(3x + 15) = 20
  2. Distribute and Simplify: Distribute 77 into the parentheses.4x+7×3x+7×15=20-4x + 7 \times 3x + 7 \times 15 = 204x+21x+105=20-4x + 21x + 105 = 20
  3. Combine Like Terms: Combine like terms.\newline4x+21x=17x-4x + 21x = 17x\newline17x+105=2017x + 105 = 20
  4. Isolate x Term: Subtract 105105 from both sides of the equation to isolate the term with xx.\newline17x+105105=2010517x + 105 - 105 = 20 - 105\newline17x=8517x = -85
  5. Solve for x: Divide both sides by 1717 to solve for x.\newline17x17=8517\frac{17x}{17} = \frac{-85}{17}\newlinex=5x = -5
  6. Substitute xx into yy: Substitute xx back into the second equation to solve for yy.
    y=3x+15y = 3x + 15
    y=3(5)+15y = 3(-5) + 15
  7. Calculate y Value: Calculate the value of y.\newliney = 15+15-15 + 15\newliney = 00