Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the quadratic equation: (2x25x+3=0)(2x^2-5x+3=0)

Full solution

Q. Solve the quadratic equation: (2x25x+3=0)(2x^2-5x+3=0)
  1. Identify Coefficients: Identify the coefficients of the quadratic equation 2x25x+3=02x^2 - 5x + 3 = 0. Compare the given equation with the standard form ax2+bx+c=0ax^2 + bx + c = 0 to find the coefficients aa, bb, and cc. Here, a=2a = 2, b=5b = -5, and c=3c = 3.
  2. Use Quadratic Formula: Use the quadratic formula to find the roots of the equation.\newlineThe quadratic formula is given by x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.\newlineSubstitute the values of aa, bb, and cc into the formula.\newlinex=(5)±(5)242322x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4\cdot 2\cdot 3}}{2\cdot 2}.
  3. Simplify Terms: Simplify the terms inside the square root and outside.\newlineCalculate the discriminant b24acb^2 - 4ac.\newlineDiscriminant = (5)2423=2524=1(-5)^2 - 4\cdot 2\cdot 3 = 25 - 24 = 1.\newlineNow, the formula becomes x=5±14x = \frac{5 \pm \sqrt{1}}{4}.
  4. Calculate Roots: Calculate the roots using the simplified quadratic formula.\newlineSince the discriminant is positive, we will have two real roots.\newlineRoot 11: x=5+14=5+14=64=32x = \frac{5 + \sqrt{1}}{4} = \frac{5 + 1}{4} = \frac{6}{4} = \frac{3}{2}.\newlineRoot 22: x=514=514=44=1x = \frac{5 - \sqrt{1}}{4} = \frac{5 - 1}{4} = \frac{4}{4} = 1.

More problems from Quadratic equation with complex roots