Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the following for yy:x6+y4=1\frac{x}{6}+\frac{y}{4}=1\newliney=y=

Full solution

Q. Solve the following for yy:x6+y4=1\frac{x}{6}+\frac{y}{4}=1\newliney=y=
  1. Clear Fractions: Multiply every term by the least common multiple of the denominators to clear the fractions.\newlineThe least common multiple of 66 and 44 is 1212. Multiply each term by 1212 to clear the fractions.\newline(12×x6)+(12×y4)=12×1(12 \times \frac{x}{6}) + (12 \times \frac{y}{4}) = 12 \times 1
  2. Simplify Terms: Simplify each term.\newline(126)×x+(124)×y=12(\frac{12}{6}) \times x + (\frac{12}{4}) \times y = 12\newline2x+3y=122x + 3y = 12
  3. Isolate Variable yy: Isolate the variable yy.\newlineTo isolate yy, subtract 2x2x from both sides of the equation.\newline2x+3y2x=122x2x + 3y - 2x = 12 - 2x\newline3y=122x3y = 12 - 2x
  4. Solve for y: Divide both sides by 33 to solve for y.3y3=(122x)3\frac{3y}{3} = \frac{(12 - 2x)}{3}y=(122x)3y = \frac{(12 - 2x)}{3}