Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the exponential equation for 
x.

{:[32^((x)/(5))=((1)/(16))^(4x-3)],[x=◻]:}

Solve the exponential equation for x x .\newline32x5=(116)4x3x= \begin{array}{l} 32^{\frac{x}{5}}=\left(\frac{1}{16}\right)^{4 x-3} \\ x=\square \end{array}

Full solution

Q. Solve the exponential equation for x x .\newline32x5=(116)4x3x= \begin{array}{l} 32^{\frac{x}{5}}=\left(\frac{1}{16}\right)^{4 x-3} \\ x=\square \end{array}
  1. Write Given Exponential Equation: Write down the given exponential equation.\newlineThe equation is 32x5=(116)4x332^{\frac{x}{5}} = \left(\frac{1}{16}\right)^{4x-3}.
  2. Recognize Powers of 22: Recognize that 3232 and 11/1616 can be written as powers of 22.\newline32=2532 = 2^5 and 1/16=241/16 = 2^{-4}.\newlineRewrite the equation using these powers of 22.\newline25x5=24(4x3)2^{5 \cdot \frac{x}{5}} = 2^{-4 \cdot (4x-3)}.
  3. Rewrite Using Powers of 22: Simplify the exponents.\newlineSince 5x5=x5 \cdot \frac{x}{5} = x and 4(4x3)=16x+12-4 \cdot (4x-3) = -16x + 12, the equation becomes:\newline2x=216x+122^x = 2^{-16x + 12}.
  4. Simplify Exponents: Since the bases are the same, set the exponents equal to each other.\newlinex=16x+12x = -16x + 12.
  5. Set Exponents Equal: Solve for x.\newlineAdd 1616x to both sides of the equation to get all x terms on one side:\newlinex+16x=12x + 16x = 12.\newlineCombine like terms:\newline17x=1217x = 12.
  6. Solve for x: Divide both sides by 1717 to isolate x.\newlinex=1217x = \frac{12}{17}.

More problems from Evaluate exponential functions