Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
x^(2)-x-11=-2x to the nearest tenth.
Answer: 
x=

Solve the equation x2x11=2x x^{2}-x-11=-2 x to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation x2x11=2x x^{2}-x-11=-2 x to the nearest tenth.\newlineAnswer: x= x=
  1. Simplify the equation: First, we need to simplify the equation by moving all terms to one side to set the equation to zero.\newlinex2x11=2xx^{2} - x - 11 = -2x\newlineAdd 2x2x to both sides to combine like terms.\newlinex2x+2x11=0x^{2} - x + 2x - 11 = 0\newlinex2+x11=0x^{2} + x - 11 = 0
  2. Quadratic formula setup: Now, we have a quadratic equation in the form ax2+bx+c=0ax^2 + bx + c = 0. We can solve for xx using the quadratic formula, x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1a = 1, b=1b = 1, and c=11c = -11. First, calculate the discriminant (b24ac)(b^2 - 4ac). Discriminant = (1)24(1)(11)(1)^2 - 4(1)(-11) Discriminant = 1+441 + 44 Discriminant = 4545
  3. Calculate discriminant: Since the discriminant is positive, we have two real solutions. Now, we will use the quadratic formula to find the solutions.\newlinex=1±4521x = \frac{-1 \pm \sqrt{45}}{2\cdot1}\newlinex=1±452x = \frac{-1 \pm \sqrt{45}}{2}
  4. Use quadratic formula: Calculate the two solutions using the quadratic formula.\newlineFirst solution:\newlinex=1+452x = \frac{-1 + \sqrt{45}}{2}\newlinex=1+6.7082x = \frac{-1 + 6.708}{2}\newlinex=5.7082x = \frac{5.708}{2}\newlinex=2.854x = 2.854\newlineRound to the nearest tenth: x2.9x \approx 2.9\newlineSecond solution:\newlinex=1452x = \frac{-1 - \sqrt{45}}{2}\newlinex=16.7082x = \frac{-1 - 6.708}{2}\newlinex=7.7082x = \frac{-7.708}{2}\newlinex=3.854x = -3.854\newlineRound to the nearest tenth: x3.9x \approx -3.9

More problems from Solve exponential equations using logarithms