Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
x^(2)-7x+8=0 to the nearest tenth.
Answer: 
x=

Solve the equation x27x+8=0 x^{2}-7 x+8=0 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation x27x+8=0 x^{2}-7 x+8=0 to the nearest tenth.\newlineAnswer: x= x=
  1. Identify Equation Type: Identify the type of equation.\newlineWe have a quadratic equation in the form of ax2+bx+c=0ax^2 + bx + c = 0, where a=1a = 1, b=7b = -7, and c=8c = 8.
  2. Solve Using Quadratic Formula: Solve the quadratic equation using the quadratic formula.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.\newlineHere, a=1a = 1, b=7b = -7, and c=8c = 8.
  3. Calculate Discriminant: Calculate the discriminant b24acb^2 - 4ac.\newlineDiscriminant = (7)24(1)(8)=4932=17(-7)^2 - 4(1)(8) = 49 - 32 = 17.
  4. Apply to Quadratic Formula: Apply the discriminant to the quadratic formula.\newlinex=(7)±1721x = \frac{-(-7) \pm \sqrt{17}}{2 \cdot 1}\newlinex=7±172x = \frac{7 \pm \sqrt{17}}{2}
  5. Calculate Possible Solutions: Calculate the two possible solutions for xx.\newlineFirst solution: x=7+172x = \frac{7 + \sqrt{17}}{2}\newlineSecond solution: x=7172x = \frac{7 - \sqrt{17}}{2}
  6. Evaluate Solutions: Evaluate the solutions to the nearest tenth.\newlineFirst solution: x(7+4.123)/211.123/25.6x \approx (7 + 4.123) / 2 \approx 11.123 / 2 \approx 5.6\newlineSecond solution: x(74.123)/22.877/21.4x \approx (7 - 4.123) / 2 \approx 2.877 / 2 \approx 1.4

More problems from Solve exponential equations using logarithms