Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
x^(2)-6x-37=0 to the nearest tenth.
Answer: 
x=

Solve the equation x26x37=0 x^{2}-6 x-37=0 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation x26x37=0 x^{2}-6 x-37=0 to the nearest tenth.\newlineAnswer: x= x=
  1. Identify Equation Type: Identify the type of equation.\newlineWe have a quadratic equation in the form of ax2+bx+c=0ax^2 + bx + c = 0, where a=1a = 1, b=6b = -6, and c=37c = -37.
  2. Use Quadratic Formula: Use the quadratic formula to solve for xx. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Here, a=1a = 1, b=6b = -6, and c=37c = -37.
  3. Calculate Discriminant: Calculate the discriminant b24acb^2 - 4ac.\newlineDiscriminant = (6)24(1)(37)=36+148=184(-6)^2 - 4(1)(-37) = 36 + 148 = 184.
  4. Calculate Solutions: Calculate the two solutions using the quadratic formula.\newlinex=(6)±18421x = \frac{-(-6) \pm \sqrt{184}}{2 \cdot 1}\newlinex=6±1842x = \frac{6 \pm \sqrt{184}}{2}
  5. Calculate First Solution: Calculate the first solution (using the + sign).\newlinex=6+1842x = \frac{6 + \sqrt{184}}{2}\newlinex6+13.56472x \approx \frac{6 + 13.5647}{2}\newlinex19.56472x \approx \frac{19.5647}{2}\newlinex9.78235x \approx 9.78235\newlineRound to the nearest tenth: x9.8x \approx 9.8
  6. Calculate Second Solution: Calculate the second solution (using the - sign).\newlinex=61842x = \frac{6 - \sqrt{184}}{2}\newlinex613.56472x \approx \frac{6 - 13.5647}{2}\newlinex7.56472x \approx \frac{-7.5647}{2}\newlinex3.78235x \approx -3.78235\newlineRound to the nearest tenth: x3.8x \approx -3.8

More problems from Solve exponential equations using logarithms