Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
x^(2)-4x+38=8x+4 to the nearest tenth.
Answer: 
x=

Solve the equation x24x+38=8x+4 x^{2}-4 x+38=8 x+4 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation x24x+38=8x+4 x^{2}-4 x+38=8 x+4 to the nearest tenth.\newlineAnswer: x= x=
  1. Set Equation Equal to Zero: Bring all terms to one side of the equation to set it equal to zero.\newlinex24x+38=8x+4x^2 - 4x + 38 = 8x + 4\newlinex24x8x+384=0x^2 - 4x - 8x + 38 - 4 = 0\newlinex212x+34=0x^2 - 12x + 34 = 0
  2. Use Quadratic Formula: Use the quadratic formula to solve for xx. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1a = 1, b=12b = -12, and c=34c = 34.
  3. Calculate Discriminant: Calculate the discriminant b24acb^2 - 4ac to determine the nature of the roots.(\newline\)Discriminant = (12)24(1)(34) (-12)^2 - 4(1)(34) (\newline\)Discriminant = 144136144 - 136(\newline\)Discriminant = $8(\newline\)Since the discriminant is positive, there are two real solutions.
  4. Calculate Solutions: Calculate the two solutions using the quadratic formula.\newlinex=(12)±821x = \frac{-(-12) \pm \sqrt{8}}{2 \cdot 1}\newlinex=12±82x = \frac{12 \pm \sqrt{8}}{2}
  5. Simplify Square Root: Simplify the square root of the discriminant to the nearest tenth. 82.8\sqrt{8} \approx 2.8 (to the nearest tenth)
  6. Finalize Solutions: Calculate the two values of xx using the simplified square root.x=12+2.82x = \frac{{12 + 2.8}}{{2}} and x=122.82x = \frac{{12 - 2.8}}{{2}}x14.82x \approx \frac{{14.8}}{{2}} and x9.22x \approx \frac{{9.2}}{{2}}x7.4x \approx 7.4 and x4.6x \approx 4.6