Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
x^(2)+17 x+45=0 to the nearest tenth.
Answer: 
x=

Solve the equation x2+17x+45=0 x^{2}+17 x+45=0 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation x2+17x+45=0 x^{2}+17 x+45=0 to the nearest tenth.\newlineAnswer: x= x=
  1. Identify the quadratic equation: Identify the quadratic equation.\newlineThe given equation is x2+17x+45=0x^2 + 17x + 45 = 0, which is a quadratic equation in the standard form ax2+bx+c=0ax^2 + bx + c = 0, where a=1a = 1, b=17b = 17, and c=45c = 45.
  2. Apply the quadratic formula: Apply the quadratic formula to find the solutions for xx. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. For our equation, a=1a = 1, b=17b = 17, and c=45c = 45.
  3. Calculate the discriminant: Calculate the discriminant b24acb^2 - 4ac.\newlineDiscriminant = b24ac=(17)24(1)(45)=289180=109b^2 - 4ac = (17)^2 - 4(1)(45) = 289 - 180 = 109.
  4. Calculate the two solutions: Calculate the two solutions using the quadratic formula.\newlinex=b±discriminant2ax = \frac{-b \pm \sqrt{\text{discriminant}}}{2a}\newlinex=17±1092x = \frac{-17 \pm \sqrt{109}}{2}
  5. Calculate the first solution: Calculate the first solution (using the '+' in '±\pm').\newlinex1=17+1092x_1 = \frac{-17 + \sqrt{109}}{2}\newlinex117+10.44032x_1 \approx \frac{-17 + 10.4403}{2}\newlinex16.55972x_1 \approx \frac{-6.5597}{2}\newlinex13.27985x_1 \approx -3.27985\newlineRound to the nearest tenth: x13.3x_1 \approx -3.3
  6. Calculate the second solution: Calculate the second solution (using the '-' in '±\pm').\newlinex2=171092x_2 = \frac{{-17 - \sqrt{109}}}{{2}}\newlinex21710.44032x_2 \approx \frac{{-17 - 10.4403}}{{2}}\newlinex227.44032x_2 \approx \frac{{-27.4403}}{{2}}\newlinex213.72015x_2 \approx -13.72015\newlineRound to the nearest tenth: x213.7x_2 \approx -13.7

More problems from Solve exponential equations using common logarithms