Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
5x^(2)+14 x-4=0 to the nearest tenth.
Answer: 
x=

Solve the equation 5x2+14x4=0 5 x^{2}+14 x-4=0 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation 5x2+14x4=0 5 x^{2}+14 x-4=0 to the nearest tenth.\newlineAnswer: x= x=
  1. Identify Equation Type: Identify the type of equation.\newlineWe have a quadratic equation in the form ax2+bx+c=0ax^2 + bx + c = 0, where a=5a = 5, b=14b = 14, and c=4c = -4.
  2. Use Quadratic Formula: Use the quadratic formula to solve for xx. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
  3. Substitute Values: Substitute the values of aa, bb, and cc into the quadratic formula.x=(14)±(14)24(5)(4)2(5)x = \frac{{-(14) \pm \sqrt{{(14)^2 - 4(5)(-4)}}}}{{2(5)}}
  4. Simplify Square Root: Simplify under the square root.\newlinex=14±196+8010x = \frac{{-14 \pm \sqrt{{196 + 80}}}}{10}\newlinex=14±27610x = \frac{{-14 \pm \sqrt{{276}}}}{10}
  5. Calculate Discriminant: Calculate the discriminant (276\sqrt{276}).\newline27616.613\sqrt{276} \approx 16.613
  6. Solve for Positive xx: Solve for xx using the positive part of the ±\pm symbol.\newlinex=14+16.61310x = \frac{{-14 + 16.613}}{{10}}\newlinex=2.61310x = \frac{{2.613}}{{10}}\newlinex=0.2613x = 0.2613
  7. Solve for Negative x: Solve for x using the negative part of the ±\pm symbol.\newlinex=(1416.613)/10x = (-14 - 16.613) / 10\newlinex=30.613/10x = -30.613 / 10\newline$x = \(-3\).\(0613\)
  8. Round Solutions: Round both solutions to the nearest tenth. \(\newline\)\(x \approx 0.3\) and \(x \approx -3.1\)

More problems from Solve exponential equations using common logarithms