Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
2x^(2)+5x+3=-7x to the nearest tenth.
Answer: 
x=

Solve the equation 2x2+5x+3=7x 2 x^{2}+5 x+3=-7 x to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation 2x2+5x+3=7x 2 x^{2}+5 x+3=-7 x to the nearest tenth.\newlineAnswer: x= x=
  1. Move Terms to One Side: First, we need to move all terms to one side of the equation to set it equal to zero.\newline2x2+5x+3=7x2x^2 + 5x + 3 = -7x\newlineAdd 7x7x to both sides to get:\newline2x2+5x+7x+3=02x^2 + 5x + 7x + 3 = 0\newline2x2+12x+3=02x^2 + 12x + 3 = 0
  2. Quadratic Equation Standard Form: Now we have a quadratic equation in the standard form ax2+bx+c=0ax^2 + bx + c = 0, where a=2a = 2, b=12b = 12, and c=3c = 3. We can solve this equation using the quadratic formula, x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.\newlineFirst, calculate the discriminant (b24acb^2 - 4ac):\newlineDiscriminant = (12)24(2)(3)(12)^2 - 4(2)(3)\newlineDiscriminant = 14424144 - 24\newlineDiscriminant = 120120
  3. Calculate Discriminant: Since the discriminant is positive, we will have two real solutions. Now we can apply the quadratic formula:\newlinex=12±1202×2x = \frac{-12 \pm \sqrt{120}}{2 \times 2}\newlinex=12±1204x = \frac{-12 \pm \sqrt{120}}{4}
  4. Apply Quadratic Formula: Next, we simplify the square root of 120120. We can simplify 120\sqrt{120} to 2302\sqrt{30} to make calculations easier.\newlinex=12±2304x = \frac{-12 \pm 2\sqrt{30}}{4}
  5. Simplify Square Root: Now we can simplify the equation by dividing both terms in the numerator by 44:x=3±302x = \frac{-3 \pm \sqrt{30}}{2}
  6. Divide by 44: Finally, we calculate the two solutions and round them to the nearest tenth:\newlinex1=3+302x_1 = \frac{-3 + \sqrt{30}}{2}\newlinex13+5.4772x_1 \approx \frac{-3 + 5.477}{2}\newlinex12.4772x_1 \approx \frac{2.477}{2}\newlinex11.2x_1 \approx 1.2\newlinex2=3302x_2 = \frac{-3 - \sqrt{30}}{2}\newlinex235.4772x_2 \approx \frac{-3 - 5.477}{2}\newlinex28.4772x_2 \approx \frac{-8.477}{2}\newlinex24.2x_2 \approx -4.2

More problems from Solve exponential equations using logarithms