Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
2x^(2)-15 x+20=0 to the nearest tenth.
Answer: 
x=

Solve the equation 2x215x+20=0 2 x^{2}-15 x+20=0 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation 2x215x+20=0 2 x^{2}-15 x+20=0 to the nearest tenth.\newlineAnswer: x= x=
  1. Use Quadratic Formula: We will use the quadratic formula to solve the equation 2x215x+20=02x^2 - 15x + 20 = 0. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where aa, bb, and cc are the coefficients from the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0. In our case, a=2a = 2, b=15b = -15, and c=20c = 20.
  2. Calculate Discriminant: First, we calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac. Discriminant = (15)24×2×20=225160=65(-15)^2 - 4 \times 2 \times 20 = 225 - 160 = 65.
  3. Plug Values and Solve: Now we can plug the values of aa, bb, and the discriminant into the quadratic formula to find the two possible values for xx.\newlinex=(15)±652×2x = \frac{-(-15) \pm \sqrt{65}}{2 \times 2}\newlinex=15±654x = \frac{15 \pm \sqrt{65}}{4}
  4. Calculate First Solution: We will now calculate the two possible solutions for xx.\newlineFirst solution: x=15+654x = \frac{15 + \sqrt{65}}{4}\newlineSecond solution: x=15654x = \frac{15 - \sqrt{65}}{4}
  5. Calculate Second Solution: Let's calculate the first solution:\newlinex=15+654x = \frac{15 + \sqrt{65}}{4}\newlinex15+8.0624x \approx \frac{15 + 8.062}{4}\newlinex23.0624x \approx \frac{23.062}{4}\newlinex5.7655x \approx 5.7655\newlineRounded to the nearest tenth, x5.8x \approx 5.8
  6. Calculate Second Solution: Let's calculate the first solution:\newlinex=15+654x = \frac{15 + \sqrt{65}}{4}\newlinex15+8.0624x \approx \frac{15 + 8.062}{4}\newlinex23.0624x \approx \frac{23.062}{4}\newlinex5.7655x \approx 5.7655\newlineRounded to the nearest tenth, x5.8x \approx 5.8Now, let's calculate the second solution:\newlinex=15654x = \frac{15 - \sqrt{65}}{4}\newlinex158.0624x \approx \frac{15 - 8.062}{4}\newlinex6.9384x \approx \frac{6.938}{4}\newlinex1.7345x \approx 1.7345\newlineRounded to the nearest tenth, x1.7x \approx 1.7

More problems from Solve exponential equations using common logarithms