Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve. Round your answer to the nearest thousandth.\newline8=3x8 = 3^x\newlinex=x = ____

Full solution

Q. Solve. Round your answer to the nearest thousandth.\newline8=3x8 = 3^x\newlinex=x = ____
  1. Apply Logarithm: 8=3x8 = 3^x\newlineApply the logarithm to both sides of the equation to solve for xx.\newlinelog(8)=log(3x)log(8) = log(3^x)
  2. Use Power Property: log(8)=log(3x)\log(8) = \log(3^x)\newlineUse the power property of logarithms to bring the exponent xx in front of the log.\newlinelog(8)=xlog(3)\log(8) = x \cdot \log(3)
  3. Isolate xx: log(8)=xlog(3)\log(8) = x \cdot \log(3)\newlineIsolate xx by dividing both sides of the equation by log(3)\log(3).\newlinex=log(8)log(3)x = \frac{\log(8)}{\log(3)}
  4. Calculate x: Calculate the value of x using a calculator.\newlinex=log(8)log(3)x = \frac{\log(8)}{\log(3)}\newlinex1.8927892607143722x \approx 1.8927892607143722\ldots
  5. Round to Nearest: Round the value of xx to the nearest thousandth.x1.893x \approx 1.893

More problems from Solve exponential equations using common logarithms