Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx. \newline5=6x5 = 6^x\newlineRound your answer to the nearest thousandth.

Full solution

Q. Solve for xx. \newline5=6x5 = 6^x\newlineRound your answer to the nearest thousandth.
  1. Apply Logarithms: 5=6x5 = 6^x\newlineApply logarithms to both sides of the equation to solve for xx.\newlineTake the natural logarithm (ln)(\ln) of both sides.\newlineln(5)=ln(6x)\ln(5) = \ln(6^x)
  2. Use Power Property: ln(5)=ln(6x)\ln(5) = \ln(6^x)\newlineUse the power property of logarithms to bring the exponent xx in front of the logarithm.\newlinePower Property: ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a)\newlineln(5)=xln(6)\ln(5) = x \cdot \ln(6)
  3. Isolate xx: ln(5)=xln(6)\ln(5) = x \cdot \ln(6)\newlineIsolate xx by dividing both sides of the equation by ln(6)\ln(6).\newlinex=ln(5)ln(6)x = \frac{\ln(5)}{\ln(6)}
  4. Calculate x: Calculate the value of x using a calculator.\newlinex=ln(5)ln(6)x = \frac{\ln(5)}{\ln(6)}\newlinex0.8981.792x \approx \frac{0.898}{1.792}\newlinex0.501x \approx 0.501\newlineRound the answer to the nearest thousandth.\newlinex0.501x \approx 0.501

More problems from Solve exponential equations using common logarithms